Step | Hyp | Ref
| Expression |
1 | | dihval.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑈) |
2 | 1 | fvexi 6818 |
. 2
⊢ 𝑆 ∈ V |
3 | | nfv 1915 |
. . 3
⊢
Ⅎ𝑞((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
4 | | nfvd 1916 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → Ⅎ𝑞(𝐼‘𝑋) = ((𝐶‘𝑄) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) |
5 | | dihval.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
6 | | dihval.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
7 | | dihval.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
8 | | dihval.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
9 | | dihval.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
10 | | dihval.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
11 | | dihval.i |
. . . . 5
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
12 | | dihval.d |
. . . . 5
⊢ 𝐷 = ((DIsoB‘𝐾)‘𝑊) |
13 | | dihval.c |
. . . . 5
⊢ 𝐶 = ((DIsoC‘𝐾)‘𝑊) |
14 | | dihval.u |
. . . . 5
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
15 | | dihval.p |
. . . . 5
⊢ ⊕ =
(LSSum‘𝑈) |
16 | 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 1, 15 | dihvalc 39289 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
17 | 16 | 3adant3 1132 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐼‘𝑋) = (℩𝑢 ∈ 𝑆 ∀𝑞 ∈ 𝐴 ((¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑢 = ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))))) |
18 | | eqeq1 2740 |
. . . 4
⊢ (((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = (𝐼‘𝑋) → (((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑄) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ↔ (𝐼‘𝑋) = ((𝐶‘𝑄) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) |
19 | 18 | adantl 483 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = (𝐼‘𝑋)) → (((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑄) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) ↔ (𝐼‘𝑋) = ((𝐶‘𝑄) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) |
20 | | simpl1 1191 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
21 | | simprl 769 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → 𝑞 ∈ 𝐴) |
22 | | simprrl 779 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ¬ 𝑞 ≤ 𝑊) |
23 | 21, 22 | jca 513 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) |
24 | | simpl3l 1228 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
25 | | simpl2l 1226 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → 𝑋 ∈ 𝐵) |
26 | | simprrr 780 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
27 | | simpl3r 1229 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
28 | 26, 27 | eqtr4d 2779 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → (𝑞 ∨ (𝑋 ∧ 𝑊)) = (𝑄 ∨ (𝑋 ∧ 𝑊))) |
29 | 5, 6, 7, 8, 9, 10,
12, 13, 14, 15 | dihjust 39273 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑋 ∈ 𝐵) ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = (𝑄 ∨ (𝑋 ∧ 𝑊))) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑄) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) |
30 | 20, 23, 24, 25, 28, 29 | syl131anc 1383 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ (𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑄) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) |
31 | 30 | ex 414 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝑞 ∈ 𝐴 ∧ (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ((𝐶‘𝑞) ⊕ (𝐷‘(𝑋 ∧ 𝑊))) = ((𝐶‘𝑄) ⊕ (𝐷‘(𝑋 ∧ 𝑊))))) |
32 | 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 1, 15 | dihlsscpre 39290 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ∈ 𝑆) |
33 | 32 | 3adant3 1132 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐼‘𝑋) ∈ 𝑆) |
34 | 5, 6, 7, 8, 9, 10 | lhpmcvr2 38080 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
35 | 34 | 3adant3 1132 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑊 ∧ (𝑞 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
36 | 3, 4, 17, 19, 31, 33, 35 | riotasv3d 37016 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) ∧ 𝑆 ∈ V) → (𝐼‘𝑋) = ((𝐶‘𝑄) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) |
37 | 2, 36 | mpan2 689 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐼‘𝑋) = ((𝐶‘𝑄) ⊕ (𝐷‘(𝑋 ∧ 𝑊)))) |