Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlim4 Structured version   Visualization version   GIF version

Theorem nlim4 43396
Description: 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlim4 ¬ Lim 4o

Proof of Theorem nlim4
StepHypRef Expression
1 3on 8505 . 2 3o ∈ On
2 nlimsuc 43392 . . 3 (3o ∈ On → ¬ Lim suc 3o)
3 df-4o 8490 . . . 4 4o = suc 3o
4 limeq 6375 . . . 4 (4o = suc 3o → (Lim 4o ↔ Lim suc 3o))
53, 4ax-mp 5 . . 3 (Lim 4o ↔ Lim suc 3o)
62, 5sylnibr 329 . 2 (3o ∈ On → ¬ Lim 4o)
71, 6ax-mp 5 1 ¬ Lim 4o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1539  wcel 2107  Oncon0 6363  Lim wlim 6364  suc csuc 6365  3oc3o 8482  4oc4o 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-1o 8487  df-2o 8488  df-3o 8489  df-4o 8490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator