| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nlim4 | Structured version Visualization version GIF version | ||
| Description: 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
| Ref | Expression |
|---|---|
| nlim4 | ⊢ ¬ Lim 4o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3on 8505 | . 2 ⊢ 3o ∈ On | |
| 2 | nlimsuc 43392 | . . 3 ⊢ (3o ∈ On → ¬ Lim suc 3o) | |
| 3 | df-4o 8490 | . . . 4 ⊢ 4o = suc 3o | |
| 4 | limeq 6375 | . . . 4 ⊢ (4o = suc 3o → (Lim 4o ↔ Lim suc 3o)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (Lim 4o ↔ Lim suc 3o) |
| 6 | 2, 5 | sylnibr 329 | . 2 ⊢ (3o ∈ On → ¬ Lim 4o) |
| 7 | 1, 6 | ax-mp 5 | 1 ⊢ ¬ Lim 4o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 Oncon0 6363 Lim wlim 6364 suc csuc 6365 3oc3o 8482 4oc4o 8483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-1o 8487 df-2o 8488 df-3o 8489 df-4o 8490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |