Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlim4 Structured version   Visualization version   GIF version

Theorem nlim4 43449
Description: 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlim4 ¬ Lim 4o

Proof of Theorem nlim4
StepHypRef Expression
1 3on 8529 . 2 3o ∈ On
2 nlimsuc 43445 . . 3 (3o ∈ On → ¬ Lim suc 3o)
3 df-4o 8514 . . . 4 4o = suc 3o
4 limeq 6401 . . . 4 (4o = suc 3o → (Lim 4o ↔ Lim suc 3o))
53, 4ax-mp 5 . . 3 (Lim 4o ↔ Lim suc 3o)
62, 5sylnibr 329 . 2 (3o ∈ On → ¬ Lim 4o)
71, 6ax-mp 5 1 ¬ Lim 4o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1538  wcel 2107  Oncon0 6389  Lim wlim 6390  suc csuc 6391  3oc3o 8506  4oc4o 8507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-1o 8511  df-2o 8512  df-3o 8513  df-4o 8514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator