![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nlim4 | Structured version Visualization version GIF version |
Description: 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.) |
Ref | Expression |
---|---|
nlim4 | ⊢ ¬ Lim 4o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3on 8529 | . 2 ⊢ 3o ∈ On | |
2 | nlimsuc 43445 | . . 3 ⊢ (3o ∈ On → ¬ Lim suc 3o) | |
3 | df-4o 8514 | . . . 4 ⊢ 4o = suc 3o | |
4 | limeq 6401 | . . . 4 ⊢ (4o = suc 3o → (Lim 4o ↔ Lim suc 3o)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (Lim 4o ↔ Lim suc 3o) |
6 | 2, 5 | sylnibr 329 | . 2 ⊢ (3o ∈ On → ¬ Lim 4o) |
7 | 1, 6 | ax-mp 5 | 1 ⊢ ¬ Lim 4o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1538 ∈ wcel 2107 Oncon0 6389 Lim wlim 6390 suc csuc 6391 3oc3o 8506 4oc4o 8507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-1o 8511 df-2o 8512 df-3o 8513 df-4o 8514 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |