Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlim4 Structured version   Visualization version   GIF version

Theorem nlim4 43418
Description: 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.)
Assertion
Ref Expression
nlim4 ¬ Lim 4o

Proof of Theorem nlim4
StepHypRef Expression
1 3on 8404 . 2 3o ∈ On
2 nlimsuc 43414 . . 3 (3o ∈ On → ¬ Lim suc 3o)
3 df-4o 8391 . . . 4 4o = suc 3o
4 limeq 6319 . . . 4 (4o = suc 3o → (Lim 4o ↔ Lim suc 3o))
53, 4ax-mp 5 . . 3 (Lim 4o ↔ Lim suc 3o)
62, 5sylnibr 329 . 2 (3o ∈ On → ¬ Lim 4o)
71, 6ax-mp 5 1 ¬ Lim 4o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  Oncon0 6307  Lim wlim 6308  suc csuc 6309  3oc3o 8383  4oc4o 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-1o 8388  df-2o 8389  df-3o 8390  df-4o 8391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator