Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omelaxinf2 Structured version   Visualization version   GIF version

Theorem omelaxinf2 44972
Description: A transitive class that contains ω models the Axiom of Infinity ax-inf2 9600. Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the additional hypotheses that the Extensionality, Separation, Pairing, and Union axioms are true in 𝑀. This, apparently, is because Kunen's statement of the Axiom of Infinity uses the defined notions and suc, and these axioms guarantee that these notions are well-defined. When we state the axiom using primitives only, the need for these hypotheses disappears.

The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9597. (Contributed by Eric Schmidt, 19-Oct-2025.)

Assertion
Ref Expression
omelaxinf2 ((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝑥,𝑀,𝑦,𝑧
Allowed substitution hint:   𝑀(𝑤)

Proof of Theorem omelaxinf2
StepHypRef Expression
1 trss 5227 . . 3 (Tr 𝑀 → (ω ∈ 𝑀 → ω ⊆ 𝑀))
21imp 406 . 2 ((Tr 𝑀 ∧ ω ∈ 𝑀) → ω ⊆ 𝑀)
3 omssaxinf2 44971 . 2 ((ω ⊆ 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
42, 3sylancom 588 1 ((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wcel 2109  wral 3045  wrex 3054  wss 3916  Tr wtr 5216  ωcom 7844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-tr 5217  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-om 7845
This theorem is referenced by:  wfaxinf2  44984
  Copyright terms: Public domain W3C validator