| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omelaxinf2 | Structured version Visualization version GIF version | ||
| Description: A transitive class that
contains ω models the Axiom of Infinity
ax-inf2 9648. Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the
additional hypotheses that the Extensionality, Separation, Pairing, and
Union axioms are true in 𝑀. This, apparently, is because
Kunen's
statement of the Axiom of Infinity uses the defined notions ∅ and
suc, and these axioms guarantee that these
notions are
well-defined. When we state the axiom using primitives only, the need
for these hypotheses disappears.
The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9645. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| omelaxinf2 | ⊢ ((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trss 5238 | . . 3 ⊢ (Tr 𝑀 → (ω ∈ 𝑀 → ω ⊆ 𝑀)) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((Tr 𝑀 ∧ ω ∈ 𝑀) → ω ⊆ 𝑀) |
| 3 | omssaxinf2 44947 | . 2 ⊢ ((ω ⊆ 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) | |
| 4 | 2, 3 | sylancom 588 | 1 ⊢ ((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⊆ wss 3924 Tr wtr 5227 ωcom 7856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-tr 5228 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-om 7857 |
| This theorem is referenced by: wfaxinf2 44960 |
| Copyright terms: Public domain | W3C validator |