Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omelaxinf2 Structured version   Visualization version   GIF version

Theorem omelaxinf2 45022
Description: A transitive class that contains ω models the Axiom of Infinity ax-inf2 9526. Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the additional hypotheses that the Extensionality, Separation, Pairing, and Union axioms are true in 𝑀. This, apparently, is because Kunen's statement of the Axiom of Infinity uses the defined notions and suc, and these axioms guarantee that these notions are well-defined. When we state the axiom using primitives only, the need for these hypotheses disappears.

The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9523. (Contributed by Eric Schmidt, 19-Oct-2025.)

Assertion
Ref Expression
omelaxinf2 ((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝑥,𝑀,𝑦,𝑧
Allowed substitution hint:   𝑀(𝑤)

Proof of Theorem omelaxinf2
StepHypRef Expression
1 trss 5203 . . 3 (Tr 𝑀 → (ω ∈ 𝑀 → ω ⊆ 𝑀))
21imp 406 . 2 ((Tr 𝑀 ∧ ω ∈ 𝑀) → ω ⊆ 𝑀)
3 omssaxinf2 45021 . 2 ((ω ⊆ 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
42, 3sylancom 588 1 ((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wcel 2111  wral 3047  wrex 3056  wss 3897  Tr wtr 5193  ωcom 7791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-om 7792
This theorem is referenced by:  wfaxinf2  45034
  Copyright terms: Public domain W3C validator