| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omelaxinf2 | Structured version Visualization version GIF version | ||
| Description: A transitive class that
contains ω models the Axiom of Infinity
ax-inf2 9570. Lemma II.2.11(7) of [Kunen2] p. 114. Kunen has the
additional hypotheses that the Extensionality, Separation, Pairing, and
Union axioms are true in 𝑀. This, apparently, is because
Kunen's
statement of the Axiom of Infinity uses the defined notions ∅ and
suc, and these axioms guarantee that these
notions are
well-defined. When we state the axiom using primitives only, the need
for these hypotheses disappears.
The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9567. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| omelaxinf2 | ⊢ ((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trss 5220 | . . 3 ⊢ (Tr 𝑀 → (ω ∈ 𝑀 → ω ⊆ 𝑀)) | |
| 2 | 1 | imp 406 | . 2 ⊢ ((Tr 𝑀 ∧ ω ∈ 𝑀) → ω ⊆ 𝑀) |
| 3 | omssaxinf2 44951 | . 2 ⊢ ((ω ⊆ 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) | |
| 4 | 2, 3 | sylancom 588 | 1 ⊢ ((Tr 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 Tr wtr 5209 ωcom 7822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-om 7823 |
| This theorem is referenced by: wfaxinf2 44964 |
| Copyright terms: Public domain | W3C validator |