Proof of Theorem omssaxinf2
Step | Hyp | Ref
| Expression |
1 | | peano1 7906 |
. . . . 5
⊢ ∅
∈ ω |
2 | | ssel 3976 |
. . . . 5
⊢ (ω
⊆ 𝑀 → (∅
∈ ω → ∅ ∈ 𝑀)) |
3 | 1, 2 | mpi 20 |
. . . 4
⊢ (ω
⊆ 𝑀 → ∅
∈ 𝑀) |
4 | | noel 4337 |
. . . . . 6
⊢ ¬
𝑧 ∈
∅ |
5 | 4 | rgenw 3064 |
. . . . 5
⊢
∀𝑧 ∈
𝑀 ¬ 𝑧 ∈ ∅ |
6 | | eleq1 2828 |
. . . . . . 7
⊢ (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅
∈ ω)) |
7 | | eleq2 2829 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∅)) |
8 | 7 | notbid 318 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (¬ 𝑧 ∈ 𝑦 ↔ ¬ 𝑧 ∈ ∅)) |
9 | 8 | ralbidv 3177 |
. . . . . . 7
⊢ (𝑦 = ∅ → (∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦 ↔ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ ∅)) |
10 | 6, 9 | anbi12d 632 |
. . . . . 6
⊢ (𝑦 = ∅ → ((𝑦 ∈ ω ∧
∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ↔ (∅ ∈ ω ∧
∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ ∅))) |
11 | 10 | rspcev 3621 |
. . . . 5
⊢ ((∅
∈ 𝑀 ∧ (∅
∈ ω ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ ∅)) → ∃𝑦 ∈ 𝑀 (𝑦 ∈ ω ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦)) |
12 | 1, 5, 11 | mpanr12 705 |
. . . 4
⊢ (∅
∈ 𝑀 →
∃𝑦 ∈ 𝑀 (𝑦 ∈ ω ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦)) |
13 | 3, 12 | syl 17 |
. . 3
⊢ (ω
⊆ 𝑀 →
∃𝑦 ∈ 𝑀 (𝑦 ∈ ω ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦)) |
14 | | ssel 3976 |
. . . . . . 7
⊢ (ω
⊆ 𝑀 → (suc 𝑦 ∈ ω → suc 𝑦 ∈ 𝑀)) |
15 | | peano2 7908 |
. . . . . . 7
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
16 | 14, 15 | impel 505 |
. . . . . 6
⊢ ((ω
⊆ 𝑀 ∧ 𝑦 ∈ ω) → suc
𝑦 ∈ 𝑀) |
17 | 15 | adantl 481 |
. . . . . 6
⊢ ((ω
⊆ 𝑀 ∧ 𝑦 ∈ ω) → suc
𝑦 ∈
ω) |
18 | | vex 3483 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
19 | 18 | elsuc 6452 |
. . . . . . . 8
⊢ (𝑤 ∈ suc 𝑦 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) |
20 | 19 | rgenw 3064 |
. . . . . . 7
⊢
∀𝑤 ∈
𝑀 (𝑤 ∈ suc 𝑦 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) |
21 | | eleq1 2828 |
. . . . . . . . 9
⊢ (𝑧 = suc 𝑦 → (𝑧 ∈ ω ↔ suc 𝑦 ∈ ω)) |
22 | | eleq2 2829 |
. . . . . . . . . . 11
⊢ (𝑧 = suc 𝑦 → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ suc 𝑦)) |
23 | 22 | bibi1d 343 |
. . . . . . . . . 10
⊢ (𝑧 = suc 𝑦 → ((𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) ↔ (𝑤 ∈ suc 𝑦 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
24 | 23 | ralbidv 3177 |
. . . . . . . . 9
⊢ (𝑧 = suc 𝑦 → (∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) ↔ ∀𝑤 ∈ 𝑀 (𝑤 ∈ suc 𝑦 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
25 | 21, 24 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑧 = suc 𝑦 → ((𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))) ↔ (suc 𝑦 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ suc 𝑦 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
26 | 25 | rspcev 3621 |
. . . . . . 7
⊢ ((suc
𝑦 ∈ 𝑀 ∧ (suc 𝑦 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ suc 𝑦 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) → ∃𝑧 ∈ 𝑀 (𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
27 | 20, 26 | mpanr2 704 |
. . . . . 6
⊢ ((suc
𝑦 ∈ 𝑀 ∧ suc 𝑦 ∈ ω) → ∃𝑧 ∈ 𝑀 (𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
28 | 16, 17, 27 | syl2anc 584 |
. . . . 5
⊢ ((ω
⊆ 𝑀 ∧ 𝑦 ∈ ω) →
∃𝑧 ∈ 𝑀 (𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
29 | 28 | ex 412 |
. . . 4
⊢ (ω
⊆ 𝑀 → (𝑦 ∈ ω →
∃𝑧 ∈ 𝑀 (𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
30 | 29 | ralrimivw 3149 |
. . 3
⊢ (ω
⊆ 𝑀 →
∀𝑦 ∈ 𝑀 (𝑦 ∈ ω → ∃𝑧 ∈ 𝑀 (𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
31 | | eleq2 2829 |
. . . . . . . 8
⊢ (𝑥 = ω → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ω)) |
32 | 31 | anbi1d 631 |
. . . . . . 7
⊢ (𝑥 = ω → ((𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ↔ (𝑦 ∈ ω ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦))) |
33 | 32 | rexbidv 3178 |
. . . . . 6
⊢ (𝑥 = ω → (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ↔ ∃𝑦 ∈ 𝑀 (𝑦 ∈ ω ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦))) |
34 | | eleq2 2829 |
. . . . . . . . . 10
⊢ (𝑥 = ω → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ ω)) |
35 | 34 | anbi1d 631 |
. . . . . . . . 9
⊢ (𝑥 = ω → ((𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))) ↔ (𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
36 | 35 | rexbidv 3178 |
. . . . . . . 8
⊢ (𝑥 = ω → (∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))) ↔ ∃𝑧 ∈ 𝑀 (𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
37 | 31, 36 | imbi12d 344 |
. . . . . . 7
⊢ (𝑥 = ω → ((𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) ↔ (𝑦 ∈ ω → ∃𝑧 ∈ 𝑀 (𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
38 | 37 | ralbidv 3177 |
. . . . . 6
⊢ (𝑥 = ω → (∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) ↔ ∀𝑦 ∈ 𝑀 (𝑦 ∈ ω → ∃𝑧 ∈ 𝑀 (𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
39 | 33, 38 | anbi12d 632 |
. . . . 5
⊢ (𝑥 = ω → ((∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) ↔ (∃𝑦 ∈ 𝑀 (𝑦 ∈ ω ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ ω → ∃𝑧 ∈ 𝑀 (𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))))) |
40 | 39 | rspcev 3621 |
. . . 4
⊢ ((ω
∈ 𝑀 ∧
(∃𝑦 ∈ 𝑀 (𝑦 ∈ ω ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ ω → ∃𝑧 ∈ 𝑀 (𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
41 | 40 | expcom 413 |
. . 3
⊢
((∃𝑦 ∈
𝑀 (𝑦 ∈ ω ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ ω → ∃𝑧 ∈ 𝑀 (𝑧 ∈ ω ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) → (ω ∈ 𝑀 → ∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))))) |
42 | 13, 30, 41 | syl2anc 584 |
. 2
⊢ (ω
⊆ 𝑀 → (ω
∈ 𝑀 →
∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))))) |
43 | 42 | imp 406 |
1
⊢ ((ω
⊆ 𝑀 ∧ ω
∈ 𝑀) →
∃𝑥 ∈ 𝑀 (∃𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑀 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑀 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑀 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑀 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |