Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssaxinf2 Structured version   Visualization version   GIF version

Theorem omssaxinf2 44978
Description: A class that contains all ordinals up to and including ω models the Axiom of Infinity ax-inf2 9677. The antecedent of this theorem is not enough to guarantee that the class models the alternate axiom ax-inf 9674. (Contributed by Eric Schmidt, 19-Oct-2025.)
Assertion
Ref Expression
omssaxinf2 ((ω ⊆ 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝑥,𝑀,𝑦,𝑧
Allowed substitution hint:   𝑀(𝑤)

Proof of Theorem omssaxinf2
StepHypRef Expression
1 peano1 7906 . . . . 5 ∅ ∈ ω
2 ssel 3976 . . . . 5 (ω ⊆ 𝑀 → (∅ ∈ ω → ∅ ∈ 𝑀))
31, 2mpi 20 . . . 4 (ω ⊆ 𝑀 → ∅ ∈ 𝑀)
4 noel 4337 . . . . . 6 ¬ 𝑧 ∈ ∅
54rgenw 3064 . . . . 5 𝑧𝑀 ¬ 𝑧 ∈ ∅
6 eleq1 2828 . . . . . . 7 (𝑦 = ∅ → (𝑦 ∈ ω ↔ ∅ ∈ ω))
7 eleq2 2829 . . . . . . . . 9 (𝑦 = ∅ → (𝑧𝑦𝑧 ∈ ∅))
87notbid 318 . . . . . . . 8 (𝑦 = ∅ → (¬ 𝑧𝑦 ↔ ¬ 𝑧 ∈ ∅))
98ralbidv 3177 . . . . . . 7 (𝑦 = ∅ → (∀𝑧𝑀 ¬ 𝑧𝑦 ↔ ∀𝑧𝑀 ¬ 𝑧 ∈ ∅))
106, 9anbi12d 632 . . . . . 6 (𝑦 = ∅ → ((𝑦 ∈ ω ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ↔ (∅ ∈ ω ∧ ∀𝑧𝑀 ¬ 𝑧 ∈ ∅)))
1110rspcev 3621 . . . . 5 ((∅ ∈ 𝑀 ∧ (∅ ∈ ω ∧ ∀𝑧𝑀 ¬ 𝑧 ∈ ∅)) → ∃𝑦𝑀 (𝑦 ∈ ω ∧ ∀𝑧𝑀 ¬ 𝑧𝑦))
121, 5, 11mpanr12 705 . . . 4 (∅ ∈ 𝑀 → ∃𝑦𝑀 (𝑦 ∈ ω ∧ ∀𝑧𝑀 ¬ 𝑧𝑦))
133, 12syl 17 . . 3 (ω ⊆ 𝑀 → ∃𝑦𝑀 (𝑦 ∈ ω ∧ ∀𝑧𝑀 ¬ 𝑧𝑦))
14 ssel 3976 . . . . . . 7 (ω ⊆ 𝑀 → (suc 𝑦 ∈ ω → suc 𝑦𝑀))
15 peano2 7908 . . . . . . 7 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
1614, 15impel 505 . . . . . 6 ((ω ⊆ 𝑀𝑦 ∈ ω) → suc 𝑦𝑀)
1715adantl 481 . . . . . 6 ((ω ⊆ 𝑀𝑦 ∈ ω) → suc 𝑦 ∈ ω)
18 vex 3483 . . . . . . . . 9 𝑤 ∈ V
1918elsuc 6452 . . . . . . . 8 (𝑤 ∈ suc 𝑦 ↔ (𝑤𝑦𝑤 = 𝑦))
2019rgenw 3064 . . . . . . 7 𝑤𝑀 (𝑤 ∈ suc 𝑦 ↔ (𝑤𝑦𝑤 = 𝑦))
21 eleq1 2828 . . . . . . . . 9 (𝑧 = suc 𝑦 → (𝑧 ∈ ω ↔ suc 𝑦 ∈ ω))
22 eleq2 2829 . . . . . . . . . . 11 (𝑧 = suc 𝑦 → (𝑤𝑧𝑤 ∈ suc 𝑦))
2322bibi1d 343 . . . . . . . . . 10 (𝑧 = suc 𝑦 → ((𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)) ↔ (𝑤 ∈ suc 𝑦 ↔ (𝑤𝑦𝑤 = 𝑦))))
2423ralbidv 3177 . . . . . . . . 9 (𝑧 = suc 𝑦 → (∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)) ↔ ∀𝑤𝑀 (𝑤 ∈ suc 𝑦 ↔ (𝑤𝑦𝑤 = 𝑦))))
2521, 24anbi12d 632 . . . . . . . 8 (𝑧 = suc 𝑦 → ((𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))) ↔ (suc 𝑦 ∈ ω ∧ ∀𝑤𝑀 (𝑤 ∈ suc 𝑦 ↔ (𝑤𝑦𝑤 = 𝑦)))))
2625rspcev 3621 . . . . . . 7 ((suc 𝑦𝑀 ∧ (suc 𝑦 ∈ ω ∧ ∀𝑤𝑀 (𝑤 ∈ suc 𝑦 ↔ (𝑤𝑦𝑤 = 𝑦)))) → ∃𝑧𝑀 (𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
2720, 26mpanr2 704 . . . . . 6 ((suc 𝑦𝑀 ∧ suc 𝑦 ∈ ω) → ∃𝑧𝑀 (𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
2816, 17, 27syl2anc 584 . . . . 5 ((ω ⊆ 𝑀𝑦 ∈ ω) → ∃𝑧𝑀 (𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
2928ex 412 . . . 4 (ω ⊆ 𝑀 → (𝑦 ∈ ω → ∃𝑧𝑀 (𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
3029ralrimivw 3149 . . 3 (ω ⊆ 𝑀 → ∀𝑦𝑀 (𝑦 ∈ ω → ∃𝑧𝑀 (𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
31 eleq2 2829 . . . . . . . 8 (𝑥 = ω → (𝑦𝑥𝑦 ∈ ω))
3231anbi1d 631 . . . . . . 7 (𝑥 = ω → ((𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ↔ (𝑦 ∈ ω ∧ ∀𝑧𝑀 ¬ 𝑧𝑦)))
3332rexbidv 3178 . . . . . 6 (𝑥 = ω → (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ↔ ∃𝑦𝑀 (𝑦 ∈ ω ∧ ∀𝑧𝑀 ¬ 𝑧𝑦)))
34 eleq2 2829 . . . . . . . . . 10 (𝑥 = ω → (𝑧𝑥𝑧 ∈ ω))
3534anbi1d 631 . . . . . . . . 9 (𝑥 = ω → ((𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))) ↔ (𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
3635rexbidv 3178 . . . . . . . 8 (𝑥 = ω → (∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))) ↔ ∃𝑧𝑀 (𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
3731, 36imbi12d 344 . . . . . . 7 (𝑥 = ω → ((𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))) ↔ (𝑦 ∈ ω → ∃𝑧𝑀 (𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
3837ralbidv 3177 . . . . . 6 (𝑥 = ω → (∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))) ↔ ∀𝑦𝑀 (𝑦 ∈ ω → ∃𝑧𝑀 (𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
3933, 38anbi12d 632 . . . . 5 (𝑥 = ω → ((∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))) ↔ (∃𝑦𝑀 (𝑦 ∈ ω ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦 ∈ ω → ∃𝑧𝑀 (𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))))
4039rspcev 3621 . . . 4 ((ω ∈ 𝑀 ∧ (∃𝑦𝑀 (𝑦 ∈ ω ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦 ∈ ω → ∃𝑧𝑀 (𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
4140expcom 413 . . 3 ((∃𝑦𝑀 (𝑦 ∈ ω ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦 ∈ ω → ∃𝑧𝑀 (𝑧 ∈ ω ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))) → (ω ∈ 𝑀 → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))))
4213, 30, 41syl2anc 584 . 2 (ω ⊆ 𝑀 → (ω ∈ 𝑀 → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))))
4342imp 406 1 ((ω ⊆ 𝑀 ∧ ω ∈ 𝑀) → ∃𝑥𝑀 (∃𝑦𝑀 (𝑦𝑥 ∧ ∀𝑧𝑀 ¬ 𝑧𝑦) ∧ ∀𝑦𝑀 (𝑦𝑥 → ∃𝑧𝑀 (𝑧𝑥 ∧ ∀𝑤𝑀 (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3060  wrex 3069  wss 3950  c0 4332  suc csuc 6384  ωcom 7883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430  ax-un 7751
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-tr 5258  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-om 7884
This theorem is referenced by:  omelaxinf2  44979
  Copyright terms: Public domain W3C validator