| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wfaxinf2 | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets models the Axiom of Infinity ax-inf2 9570. Part of Corollary II.2.12 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| wfax.1 | ⊢ 𝑊 = ∪ (𝑅1 “ On) |
| Ref | Expression |
|---|---|
| wfaxinf2 | ⊢ ∃𝑥 ∈ 𝑊 (∃𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑊 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trwf 44942 | . . 3 ⊢ Tr ∪ (𝑅1 “ On) | |
| 2 | wfax.1 | . . . 4 ⊢ 𝑊 = ∪ (𝑅1 “ On) | |
| 3 | treq 5217 | . . . 4 ⊢ (𝑊 = ∪ (𝑅1 “ On) → (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On))) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On)) |
| 5 | 1, 4 | mpbir 231 | . 2 ⊢ Tr 𝑊 |
| 6 | onwf 9759 | . . . 4 ⊢ On ⊆ ∪ (𝑅1 “ On) | |
| 7 | omelon 9575 | . . . 4 ⊢ ω ∈ On | |
| 8 | 6, 7 | sselii 3940 | . . 3 ⊢ ω ∈ ∪ (𝑅1 “ On) |
| 9 | 8, 2 | eleqtrri 2827 | . 2 ⊢ ω ∈ 𝑊 |
| 10 | omelaxinf2 44972 | . 2 ⊢ ((Tr 𝑊 ∧ ω ∈ 𝑊) → ∃𝑥 ∈ 𝑊 (∃𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑊 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) | |
| 11 | 5, 9, 10 | mp2an 692 | 1 ⊢ ∃𝑥 ∈ 𝑊 (∃𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑊 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦 ∈ 𝑊 (𝑦 ∈ 𝑥 → ∃𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 ∧ ∀𝑤 ∈ 𝑊 (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∪ cuni 4867 Tr wtr 5209 “ cima 5634 Oncon0 6320 ωcom 7822 𝑅1cr1 9691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-r1 9693 df-rank 9694 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |