MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsucelsucb Structured version   Visualization version   GIF version

Theorem omsucelsucb 8458
Description: Membership is inherited by successors for natural numbers. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
omsucelsucb (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω)

Proof of Theorem omsucelsucb
StepHypRef Expression
1 ordom 7865 . 2 Ord ω
2 ordsucelsuc 7810 . 2 (Ord ω → (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω))
31, 2ax-mp 5 1 (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2107  Ord word 6364  suc csuc 6367  ωcom 7855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-om 7856
This theorem is referenced by:  satf0suc  34367  sat1el2xp  34370  fmlasuc0  34375
  Copyright terms: Public domain W3C validator