MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsucelsucb Structured version   Visualization version   GIF version

Theorem omsucelsucb 8460
Description: Membership is inherited by successors for natural numbers. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
omsucelsucb (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω)

Proof of Theorem omsucelsucb
StepHypRef Expression
1 ordom 7867 . 2 Ord ω
2 ordsucelsuc 7812 . 2 (Ord ω → (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω))
31, 2ax-mp 5 1 (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2104  Ord word 6362  suc csuc 6365  ωcom 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-om 7858
This theorem is referenced by:  satf0suc  34665  sat1el2xp  34668  fmlasuc0  34673
  Copyright terms: Public domain W3C validator