MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsucelsucb Structured version   Visualization version   GIF version

Theorem omsucelsucb 8479
Description: Membership is inherited by successors for natural numbers. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
omsucelsucb (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω)

Proof of Theorem omsucelsucb
StepHypRef Expression
1 ordom 7878 . 2 Ord ω
2 ordsucelsuc 7823 . 2 (Ord ω → (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω))
31, 2ax-mp 5 1 (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2107  Ord word 6362  suc csuc 6365  ωcom 7868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-om 7869
This theorem is referenced by:  satf0suc  35315  sat1el2xp  35318  fmlasuc0  35323
  Copyright terms: Public domain W3C validator