MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsucelsucb Structured version   Visualization version   GIF version

Theorem omsucelsucb 8380
Description: Membership is inherited by successors for natural numbers. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
omsucelsucb (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω)

Proof of Theorem omsucelsucb
StepHypRef Expression
1 ordom 7809 . 2 Ord ω
2 ordsucelsuc 7755 . 2 (Ord ω → (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω))
31, 2ax-mp 5 1 (𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  Ord word 6306  suc csuc 6309  ωcom 7799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-om 7800
This theorem is referenced by:  satf0suc  35353  sat1el2xp  35356  fmlasuc0  35361
  Copyright terms: Public domain W3C validator