![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omun | Structured version Visualization version GIF version |
Description: The union of two finite ordinals is a finite ordinal. (Contributed by Scott Fenton, 15-Mar-2025.) |
Ref | Expression |
---|---|
omun | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∪ 𝐵) ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 4179 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
2 | eleq1a 2828 | . . . 4 ⊢ (𝐵 ∈ ω → ((𝐴 ∪ 𝐵) = 𝐵 → (𝐴 ∪ 𝐵) ∈ ω)) | |
3 | 2 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∪ 𝐵) = 𝐵 → (𝐴 ∪ 𝐵) ∈ ω)) |
4 | 1, 3 | biimtrid 241 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐵) ∈ ω)) |
5 | ssequn2 4182 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) | |
6 | eleq1a 2828 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝐴 ∪ 𝐵) = 𝐴 → (𝐴 ∪ 𝐵) ∈ ω)) | |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∪ 𝐵) = 𝐴 → (𝐴 ∪ 𝐵) ∈ ω)) |
8 | 5, 7 | biimtrid 241 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ⊆ 𝐴 → (𝐴 ∪ 𝐵) ∈ ω)) |
9 | nnord 7859 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
10 | nnord 7859 | . . 3 ⊢ (𝐵 ∈ ω → Ord 𝐵) | |
11 | ordtri2or2 6460 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
12 | 9, 10, 11 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
13 | 4, 8, 12 | mpjaod 858 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∪ 𝐵) ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∪ cun 3945 ⊆ wss 3947 Ord word 6360 ωcom 7851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-om 7852 |
This theorem is referenced by: precsexlem10 27651 |
Copyright terms: Public domain | W3C validator |