MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omun Structured version   Visualization version   GIF version

Theorem omun 7818
Description: The union of two finite ordinals is a finite ordinal. (Contributed by Scott Fenton, 15-Mar-2025.)
Assertion
Ref Expression
omun ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵) ∈ ω)

Proof of Theorem omun
StepHypRef Expression
1 ssequn1 4136 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
2 eleq1a 2826 . . . 4 (𝐵 ∈ ω → ((𝐴𝐵) = 𝐵 → (𝐴𝐵) ∈ ω))
32adantl 481 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵) = 𝐵 → (𝐴𝐵) ∈ ω))
41, 3biimtrid 242 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴𝐵) ∈ ω))
5 ssequn2 4139 . . 3 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
6 eleq1a 2826 . . . 4 (𝐴 ∈ ω → ((𝐴𝐵) = 𝐴 → (𝐴𝐵) ∈ ω))
76adantr 480 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵) = 𝐴 → (𝐴𝐵) ∈ ω))
85, 7biimtrid 242 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → (𝐴𝐵) ∈ ω))
9 nnord 7804 . . 3 (𝐴 ∈ ω → Ord 𝐴)
10 nnord 7804 . . 3 (𝐵 ∈ ω → Ord 𝐵)
11 ordtri2or2 6407 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
129, 10, 11syl2an 596 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐵𝐴))
134, 8, 12mpjaod 860 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  cun 3900  wss 3902  Ord word 6305  ωcom 7796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310  df-om 7797
This theorem is referenced by:  precsexlem10  28152  zs12bday  28392
  Copyright terms: Public domain W3C validator