MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omun Structured version   Visualization version   GIF version

Theorem omun 7926
Description: The union of two finite ordinals is a finite ordinal. (Contributed by Scott Fenton, 15-Mar-2025.)
Assertion
Ref Expression
omun ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵) ∈ ω)

Proof of Theorem omun
StepHypRef Expression
1 ssequn1 4209 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
2 eleq1a 2839 . . . 4 (𝐵 ∈ ω → ((𝐴𝐵) = 𝐵 → (𝐴𝐵) ∈ ω))
32adantl 481 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵) = 𝐵 → (𝐴𝐵) ∈ ω))
41, 3biimtrid 242 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴𝐵) ∈ ω))
5 ssequn2 4212 . . 3 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
6 eleq1a 2839 . . . 4 (𝐴 ∈ ω → ((𝐴𝐵) = 𝐴 → (𝐴𝐵) ∈ ω))
76adantr 480 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵) = 𝐴 → (𝐴𝐵) ∈ ω))
85, 7biimtrid 242 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → (𝐴𝐵) ∈ ω))
9 nnord 7911 . . 3 (𝐴 ∈ ω → Ord 𝐴)
10 nnord 7911 . . 3 (𝐵 ∈ ω → Ord 𝐵)
11 ordtri2or2 6494 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
129, 10, 11syl2an 595 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐵𝐴))
134, 8, 12mpjaod 859 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  cun 3974  wss 3976  Ord word 6394  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-om 7904
This theorem is referenced by:  precsexlem10  28258  zs12bday  28442
  Copyright terms: Public domain W3C validator