MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omun Structured version   Visualization version   GIF version

Theorem omun 7910
Description: The union of two finite ordinals is a finite ordinal. (Contributed by Scott Fenton, 15-Mar-2025.)
Assertion
Ref Expression
omun ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵) ∈ ω)

Proof of Theorem omun
StepHypRef Expression
1 ssequn1 4185 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
2 eleq1a 2835 . . . 4 (𝐵 ∈ ω → ((𝐴𝐵) = 𝐵 → (𝐴𝐵) ∈ ω))
32adantl 481 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵) = 𝐵 → (𝐴𝐵) ∈ ω))
41, 3biimtrid 242 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴𝐵) ∈ ω))
5 ssequn2 4188 . . 3 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
6 eleq1a 2835 . . . 4 (𝐴 ∈ ω → ((𝐴𝐵) = 𝐴 → (𝐴𝐵) ∈ ω))
76adantr 480 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵) = 𝐴 → (𝐴𝐵) ∈ ω))
85, 7biimtrid 242 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → (𝐴𝐵) ∈ ω))
9 nnord 7896 . . 3 (𝐴 ∈ ω → Ord 𝐴)
10 nnord 7896 . . 3 (𝐵 ∈ ω → Ord 𝐵)
11 ordtri2or2 6482 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
129, 10, 11syl2an 596 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐵𝐴))
134, 8, 12mpjaod 860 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  cun 3948  wss 3950  Ord word 6382  ωcom 7888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-ord 6386  df-on 6387  df-om 7889
This theorem is referenced by:  precsexlem10  28241  zs12bday  28425
  Copyright terms: Public domain W3C validator