| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omun | Structured version Visualization version GIF version | ||
| Description: The union of two finite ordinals is a finite ordinal. (Contributed by Scott Fenton, 15-Mar-2025.) |
| Ref | Expression |
|---|---|
| omun | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∪ 𝐵) ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 4135 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | |
| 2 | eleq1a 2828 | . . . 4 ⊢ (𝐵 ∈ ω → ((𝐴 ∪ 𝐵) = 𝐵 → (𝐴 ∪ 𝐵) ∈ ω)) | |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∪ 𝐵) = 𝐵 → (𝐴 ∪ 𝐵) ∈ ω)) |
| 4 | 1, 3 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐵) ∈ ω)) |
| 5 | ssequn2 4138 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) | |
| 6 | eleq1a 2828 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝐴 ∪ 𝐵) = 𝐴 → (𝐴 ∪ 𝐵) ∈ ω)) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 ∪ 𝐵) = 𝐴 → (𝐴 ∪ 𝐵) ∈ ω)) |
| 8 | 5, 7 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ⊆ 𝐴 → (𝐴 ∪ 𝐵) ∈ ω)) |
| 9 | nnord 7810 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
| 10 | nnord 7810 | . . 3 ⊢ (𝐵 ∈ ω → Ord 𝐵) | |
| 11 | ordtri2or2 6412 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
| 12 | 9, 10, 11 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 13 | 4, 8, 12 | mpjaod 860 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∪ 𝐵) ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 ⊆ wss 3898 Ord word 6310 ωcom 7802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 df-om 7803 |
| This theorem is referenced by: precsexlem10 28155 zs12bday 28395 |
| Copyright terms: Public domain | W3C validator |