MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omun Structured version   Visualization version   GIF version

Theorem omun 7866
Description: The union of two finite ordinals is a finite ordinal. (Contributed by Scott Fenton, 15-Mar-2025.)
Assertion
Ref Expression
omun ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵) ∈ ω)

Proof of Theorem omun
StepHypRef Expression
1 ssequn1 4151 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
2 eleq1a 2824 . . . 4 (𝐵 ∈ ω → ((𝐴𝐵) = 𝐵 → (𝐴𝐵) ∈ ω))
32adantl 481 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵) = 𝐵 → (𝐴𝐵) ∈ ω))
41, 3biimtrid 242 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (𝐴𝐵) ∈ ω))
5 ssequn2 4154 . . 3 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
6 eleq1a 2824 . . . 4 (𝐴 ∈ ω → ((𝐴𝐵) = 𝐴 → (𝐴𝐵) ∈ ω))
76adantr 480 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵) = 𝐴 → (𝐴𝐵) ∈ ω))
85, 7biimtrid 242 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → (𝐴𝐵) ∈ ω))
9 nnord 7852 . . 3 (𝐴 ∈ ω → Ord 𝐴)
10 nnord 7852 . . 3 (𝐵 ∈ ω → Ord 𝐵)
11 ordtri2or2 6435 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
129, 10, 11syl2an 596 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐵𝐴))
134, 8, 12mpjaod 860 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3914  wss 3916  Ord word 6333  ωcom 7844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-tr 5217  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-ord 6337  df-on 6338  df-om 7845
This theorem is referenced by:  precsexlem10  28124  zs12bday  28349
  Copyright terms: Public domain W3C validator