![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardsdom2 | Structured version Visualization version GIF version |
Description: A numerable set is strictly dominated by another iff their cardinalities are strictly ordered. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
cardsdom2 | β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) β (cardβπ΅) β π΄ βΊ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carddom2 9967 | . . 3 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) β (cardβπ΅) β π΄ βΌ π΅)) | |
2 | carden2 9977 | . . . 4 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) = (cardβπ΅) β π΄ β π΅)) | |
3 | 2 | necon3abid 2969 | . . 3 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) β (cardβπ΅) β Β¬ π΄ β π΅)) |
4 | 1, 3 | anbi12d 630 | . 2 β’ ((π΄ β dom card β§ π΅ β dom card) β (((cardβπ΄) β (cardβπ΅) β§ (cardβπ΄) β (cardβπ΅)) β (π΄ βΌ π΅ β§ Β¬ π΄ β π΅))) |
5 | cardon 9934 | . . 3 β’ (cardβπ΄) β On | |
6 | cardon 9934 | . . 3 β’ (cardβπ΅) β On | |
7 | onelpss 6394 | . . 3 β’ (((cardβπ΄) β On β§ (cardβπ΅) β On) β ((cardβπ΄) β (cardβπ΅) β ((cardβπ΄) β (cardβπ΅) β§ (cardβπ΄) β (cardβπ΅)))) | |
8 | 5, 6, 7 | mp2an 689 | . 2 β’ ((cardβπ΄) β (cardβπ΅) β ((cardβπ΄) β (cardβπ΅) β§ (cardβπ΄) β (cardβπ΅))) |
9 | brsdom 8966 | . 2 β’ (π΄ βΊ π΅ β (π΄ βΌ π΅ β§ Β¬ π΄ β π΅)) | |
10 | 4, 8, 9 | 3bitr4g 314 | 1 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) β (cardβπ΅) β π΄ βΊ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β wcel 2098 β wne 2932 β wss 3940 class class class wbr 5138 dom cdm 5666 Oncon0 6354 βcfv 6533 β cen 8931 βΌ cdom 8932 βΊ csdm 8933 cardccrd 9925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-card 9929 |
This theorem is referenced by: domtri2 9979 nnsdomel 9980 indcardi 10031 sdom2en01 10292 cardsdom 10545 smobeth 10576 hargch 10663 cardpred 34548 |
Copyright terms: Public domain | W3C validator |