![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardsdom2 | Structured version Visualization version GIF version |
Description: A numerable set is strictly dominated by another iff their cardinalities are strictly ordered. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
cardsdom2 | β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) β (cardβπ΅) β π΄ βΊ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carddom2 9968 | . . 3 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) β (cardβπ΅) β π΄ βΌ π΅)) | |
2 | carden2 9978 | . . . 4 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) = (cardβπ΅) β π΄ β π΅)) | |
3 | 2 | necon3abid 2977 | . . 3 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) β (cardβπ΅) β Β¬ π΄ β π΅)) |
4 | 1, 3 | anbi12d 631 | . 2 β’ ((π΄ β dom card β§ π΅ β dom card) β (((cardβπ΄) β (cardβπ΅) β§ (cardβπ΄) β (cardβπ΅)) β (π΄ βΌ π΅ β§ Β¬ π΄ β π΅))) |
5 | cardon 9935 | . . 3 β’ (cardβπ΄) β On | |
6 | cardon 9935 | . . 3 β’ (cardβπ΅) β On | |
7 | onelpss 6401 | . . 3 β’ (((cardβπ΄) β On β§ (cardβπ΅) β On) β ((cardβπ΄) β (cardβπ΅) β ((cardβπ΄) β (cardβπ΅) β§ (cardβπ΄) β (cardβπ΅)))) | |
8 | 5, 6, 7 | mp2an 690 | . 2 β’ ((cardβπ΄) β (cardβπ΅) β ((cardβπ΄) β (cardβπ΅) β§ (cardβπ΄) β (cardβπ΅))) |
9 | brsdom 8967 | . 2 β’ (π΄ βΊ π΅ β (π΄ βΌ π΅ β§ Β¬ π΄ β π΅)) | |
10 | 4, 8, 9 | 3bitr4g 313 | 1 β’ ((π΄ β dom card β§ π΅ β dom card) β ((cardβπ΄) β (cardβπ΅) β π΄ βΊ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 β wcel 2106 β wne 2940 β wss 3947 class class class wbr 5147 dom cdm 5675 Oncon0 6361 βcfv 6540 β cen 8932 βΌ cdom 8933 βΊ csdm 8934 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-card 9930 |
This theorem is referenced by: domtri2 9980 nnsdomel 9981 indcardi 10032 sdom2en01 10293 cardsdom 10546 smobeth 10577 hargch 10664 cardpred 34081 |
Copyright terms: Public domain | W3C validator |