MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdom2 Structured version   Visualization version   GIF version

Theorem cardsdom2 9849
Description: A numerable set is strictly dominated by another iff their cardinalities are strictly ordered. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cardsdom2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem cardsdom2
StepHypRef Expression
1 carddom2 9838 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
2 carden2 9848 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))
32necon3abid 2978 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ≠ (card‘𝐵) ↔ ¬ 𝐴𝐵))
41, 3anbi12d 632 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐴) ≠ (card‘𝐵)) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
5 cardon 9805 . . 3 (card‘𝐴) ∈ On
6 cardon 9805 . . 3 (card‘𝐵) ∈ On
7 onelpss 6346 . . 3 (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ∈ (card‘𝐵) ↔ ((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐴) ≠ (card‘𝐵))))
85, 6, 7mp2an 690 . 2 ((card‘𝐴) ∈ (card‘𝐵) ↔ ((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐴) ≠ (card‘𝐵)))
9 brsdom 8840 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
104, 8, 93bitr4g 314 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2106  wne 2941  wss 3901   class class class wbr 5096  dom cdm 5624  Oncon0 6306  cfv 6483  cen 8805  cdom 8806  csdm 8807  cardccrd 9796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-ord 6309  df-on 6310  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-card 9800
This theorem is referenced by:  domtri2  9850  nnsdomel  9851  indcardi  9902  sdom2en01  10163  cardsdom  10416  smobeth  10447  hargch  10534  cardpred  33359
  Copyright terms: Public domain W3C validator