MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdom2 Structured version   Visualization version   GIF version

Theorem cardsdom2 9979
Description: A numerable set is strictly dominated by another iff their cardinalities are strictly ordered. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cardsdom2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) ∈ (cardβ€˜π΅) ↔ 𝐴 β‰Ί 𝐡))

Proof of Theorem cardsdom2
StepHypRef Expression
1 carddom2 9968 . . 3 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ↔ 𝐴 β‰Ό 𝐡))
2 carden2 9978 . . . 4 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) = (cardβ€˜π΅) ↔ 𝐴 β‰ˆ 𝐡))
32necon3abid 2977 . . 3 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) β‰  (cardβ€˜π΅) ↔ Β¬ 𝐴 β‰ˆ 𝐡))
41, 3anbi12d 631 . 2 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ (((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ∧ (cardβ€˜π΄) β‰  (cardβ€˜π΅)) ↔ (𝐴 β‰Ό 𝐡 ∧ Β¬ 𝐴 β‰ˆ 𝐡)))
5 cardon 9935 . . 3 (cardβ€˜π΄) ∈ On
6 cardon 9935 . . 3 (cardβ€˜π΅) ∈ On
7 onelpss 6401 . . 3 (((cardβ€˜π΄) ∈ On ∧ (cardβ€˜π΅) ∈ On) β†’ ((cardβ€˜π΄) ∈ (cardβ€˜π΅) ↔ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ∧ (cardβ€˜π΄) β‰  (cardβ€˜π΅))))
85, 6, 7mp2an 690 . 2 ((cardβ€˜π΄) ∈ (cardβ€˜π΅) ↔ ((cardβ€˜π΄) βŠ† (cardβ€˜π΅) ∧ (cardβ€˜π΄) β‰  (cardβ€˜π΅)))
9 brsdom 8967 . 2 (𝐴 β‰Ί 𝐡 ↔ (𝐴 β‰Ό 𝐡 ∧ Β¬ 𝐴 β‰ˆ 𝐡))
104, 8, 93bitr4g 313 1 ((𝐴 ∈ dom card ∧ 𝐡 ∈ dom card) β†’ ((cardβ€˜π΄) ∈ (cardβ€˜π΅) ↔ 𝐴 β‰Ί 𝐡))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∈ wcel 2106   β‰  wne 2940   βŠ† wss 3947   class class class wbr 5147  dom cdm 5675  Oncon0 6361  β€˜cfv 6540   β‰ˆ cen 8932   β‰Ό cdom 8933   β‰Ί csdm 8934  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-card 9930
This theorem is referenced by:  domtri2  9980  nnsdomel  9981  indcardi  10032  sdom2en01  10293  cardsdom  10546  smobeth  10577  hargch  10664  cardpred  34081
  Copyright terms: Public domain W3C validator