MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdom2 Structured version   Visualization version   GIF version

Theorem cardsdom2 10029
Description: A numerable set is strictly dominated by another iff their cardinalities are strictly ordered. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cardsdom2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem cardsdom2
StepHypRef Expression
1 carddom2 10018 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝐵) ↔ 𝐴𝐵))
2 carden2 10028 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) = (card‘𝐵) ↔ 𝐴𝐵))
32necon3abid 2976 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ≠ (card‘𝐵) ↔ ¬ 𝐴𝐵))
41, 3anbi12d 632 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐴) ≠ (card‘𝐵)) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
5 cardon 9985 . . 3 (card‘𝐴) ∈ On
6 cardon 9985 . . 3 (card‘𝐵) ∈ On
7 onelpss 6423 . . 3 (((card‘𝐴) ∈ On ∧ (card‘𝐵) ∈ On) → ((card‘𝐴) ∈ (card‘𝐵) ↔ ((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐴) ≠ (card‘𝐵))))
85, 6, 7mp2an 692 . 2 ((card‘𝐴) ∈ (card‘𝐵) ↔ ((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐴) ≠ (card‘𝐵)))
9 brsdom 9016 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
104, 8, 93bitr4g 314 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → ((card‘𝐴) ∈ (card‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2107  wne 2939  wss 3950   class class class wbr 5142  dom cdm 5684  Oncon0 6383  cfv 6560  cen 8983  cdom 8984  csdm 8985  cardccrd 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-card 9980
This theorem is referenced by:  domtri2  10030  nnsdomel  10031  indcardi  10082  sdom2en01  10343  cardsdom  10596  smobeth  10627  hargch  10714  cardpred  35105
  Copyright terms: Public domain W3C validator