Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssrncard Structured version   Visualization version   GIF version

Theorem omssrncard 42872
Description: All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.)
Assertion
Ref Expression
omssrncard ω ⊆ ran card

Proof of Theorem omssrncard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnon 7858 . . 3 (𝑥 ∈ ω → 𝑥 ∈ On)
2 onelon 6383 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
3 simpl 482 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑥 ∈ On)
4 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
5 onelpss 6398 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥)))
65biimpa 476 . . . . . . . . . . 11 (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦𝑥) → (𝑦𝑥𝑦𝑥))
72, 3, 4, 6syl21anc 835 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦𝑥𝑦𝑥))
8 df-pss 3962 . . . . . . . . . 10 (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥))
97, 8sylibr 233 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
109ex 412 . . . . . . . 8 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
111, 10syl 17 . . . . . . 7 (𝑥 ∈ ω → (𝑦𝑥𝑦𝑥))
1211imdistani 568 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦𝑥) → (𝑥 ∈ ω ∧ 𝑦𝑥))
13 php 9212 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
1412, 13syl 17 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
15 ensymb 9000 . . . . 5 (𝑥𝑦𝑦𝑥)
1614, 15sylnib 328 . . . 4 ((𝑥 ∈ ω ∧ 𝑦𝑥) → ¬ 𝑦𝑥)
1716ralrimiva 3140 . . 3 (𝑥 ∈ ω → ∀𝑦𝑥 ¬ 𝑦𝑥)
18 elrncard 42869 . . 3 (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 ¬ 𝑦𝑥))
191, 17, 18sylanbrc 582 . 2 (𝑥 ∈ ω → 𝑥 ∈ ran card)
2019ssriv 3981 1 ω ⊆ ran card
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2098  wne 2934  wral 3055  wss 3943  wpss 3944   class class class wbr 5141  ran crn 5670  Oncon0 6358  ωcom 7852  cen 8938  cardccrd 9932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-om 7853  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936
This theorem is referenced by:  0iscard  42873  1iscard  42874  nna1iscard  42877
  Copyright terms: Public domain W3C validator