Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssrncard Structured version   Visualization version   GIF version

Theorem omssrncard 41819
Description: All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.)
Assertion
Ref Expression
omssrncard ω ⊆ ran card

Proof of Theorem omssrncard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnon 7809 . . 3 (𝑥 ∈ ω → 𝑥 ∈ On)
2 onelon 6343 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
3 simpl 484 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑥 ∈ On)
4 simpr 486 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
5 onelpss 6358 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥)))
65biimpa 478 . . . . . . . . . . 11 (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦𝑥) → (𝑦𝑥𝑦𝑥))
72, 3, 4, 6syl21anc 837 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦𝑥𝑦𝑥))
8 df-pss 3930 . . . . . . . . . 10 (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥))
97, 8sylibr 233 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
109ex 414 . . . . . . . 8 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
111, 10syl 17 . . . . . . 7 (𝑥 ∈ ω → (𝑦𝑥𝑦𝑥))
1211imdistani 570 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦𝑥) → (𝑥 ∈ ω ∧ 𝑦𝑥))
13 php 9155 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
1412, 13syl 17 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
15 ensymb 8943 . . . . 5 (𝑥𝑦𝑦𝑥)
1614, 15sylnib 328 . . . 4 ((𝑥 ∈ ω ∧ 𝑦𝑥) → ¬ 𝑦𝑥)
1716ralrimiva 3144 . . 3 (𝑥 ∈ ω → ∀𝑦𝑥 ¬ 𝑦𝑥)
18 elrncard 41816 . . 3 (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 ¬ 𝑦𝑥))
191, 17, 18sylanbrc 584 . 2 (𝑥 ∈ ω → 𝑥 ∈ ran card)
2019ssriv 3949 1 ω ⊆ ran card
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wcel 2107  wne 2944  wral 3065  wss 3911  wpss 3912   class class class wbr 5106  ran crn 5635  Oncon0 6318  ωcom 7803  cen 8881  cardccrd 9872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-om 7804  df-1o 8413  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-fin 8888  df-card 9876
This theorem is referenced by:  0iscard  41820  1iscard  41821  nna1iscard  41824
  Copyright terms: Public domain W3C validator