Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssrncard Structured version   Visualization version   GIF version

Theorem omssrncard 43522
Description: All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.)
Assertion
Ref Expression
omssrncard ω ⊆ ran card

Proof of Theorem omssrncard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnon 7828 . . 3 (𝑥 ∈ ω → 𝑥 ∈ On)
2 onelon 6345 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
3 simpl 482 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑥 ∈ On)
4 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
5 onelpss 6360 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥)))
65biimpa 476 . . . . . . . . . . 11 (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦𝑥) → (𝑦𝑥𝑦𝑥))
72, 3, 4, 6syl21anc 837 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦𝑥𝑦𝑥))
8 df-pss 3931 . . . . . . . . . 10 (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥))
97, 8sylibr 234 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
109ex 412 . . . . . . . 8 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
111, 10syl 17 . . . . . . 7 (𝑥 ∈ ω → (𝑦𝑥𝑦𝑥))
1211imdistani 568 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦𝑥) → (𝑥 ∈ ω ∧ 𝑦𝑥))
13 php 9148 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
1412, 13syl 17 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
15 ensymb 8950 . . . . 5 (𝑥𝑦𝑦𝑥)
1614, 15sylnib 328 . . . 4 ((𝑥 ∈ ω ∧ 𝑦𝑥) → ¬ 𝑦𝑥)
1716ralrimiva 3125 . . 3 (𝑥 ∈ ω → ∀𝑦𝑥 ¬ 𝑦𝑥)
18 elrncard 43519 . . 3 (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 ¬ 𝑦𝑥))
191, 17, 18sylanbrc 583 . 2 (𝑥 ∈ ω → 𝑥 ∈ ran card)
2019ssriv 3947 1 ω ⊆ ran card
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wne 2925  wral 3044  wss 3911  wpss 3912   class class class wbr 5102  ran crn 5632  Oncon0 6320  ωcom 7822  cen 8892  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868
This theorem is referenced by:  0iscard  43523  1iscard  43524  nna1iscard  43527
  Copyright terms: Public domain W3C validator