![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omssrncard | Structured version Visualization version GIF version |
Description: All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.) |
Ref | Expression |
---|---|
omssrncard | ⊢ ω ⊆ ran card |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7809 | . . 3 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
2 | onelon 6343 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) | |
3 | simpl 484 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ On) | |
4 | simpr 486 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | |
5 | onelpss 6358 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥))) | |
6 | 5 | biimpa 478 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) |
7 | 2, 3, 4, 6 | syl21anc 837 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) |
8 | df-pss 3930 | . . . . . . . . . 10 ⊢ (𝑦 ⊊ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) | |
9 | 7, 8 | sylibr 233 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ⊊ 𝑥) |
10 | 9 | ex 414 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ⊊ 𝑥)) |
11 | 1, 10 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ω → (𝑦 ∈ 𝑥 → 𝑦 ⊊ 𝑥)) |
12 | 11 | imdistani 570 | . . . . . 6 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → (𝑥 ∈ ω ∧ 𝑦 ⊊ 𝑥)) |
13 | php 9155 | . . . . . 6 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ⊊ 𝑥) → ¬ 𝑥 ≈ 𝑦) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → ¬ 𝑥 ≈ 𝑦) |
15 | ensymb 8943 | . . . . 5 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑦 ≈ 𝑥) | |
16 | 14, 15 | sylnib 328 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦 ≈ 𝑥) |
17 | 16 | ralrimiva 3144 | . . 3 ⊢ (𝑥 ∈ ω → ∀𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥) |
18 | elrncard 41816 | . . 3 ⊢ (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥)) | |
19 | 1, 17, 18 | sylanbrc 584 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ran card) |
20 | 19 | ssriv 3949 | 1 ⊢ ω ⊆ ran card |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2107 ≠ wne 2944 ∀wral 3065 ⊆ wss 3911 ⊊ wpss 3912 class class class wbr 5106 ran crn 5635 Oncon0 6318 ωcom 7803 ≈ cen 8881 cardccrd 9872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-om 7804 df-1o 8413 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-fin 8888 df-card 9876 |
This theorem is referenced by: 0iscard 41820 1iscard 41821 nna1iscard 41824 |
Copyright terms: Public domain | W3C validator |