| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omssrncard | Structured version Visualization version GIF version | ||
| Description: All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.) |
| Ref | Expression |
|---|---|
| omssrncard | ⊢ ω ⊆ ran card |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7872 | . . 3 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
| 2 | onelon 6382 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) | |
| 3 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ On) | |
| 4 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | |
| 5 | onelpss 6397 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥))) | |
| 6 | 5 | biimpa 476 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) |
| 7 | 2, 3, 4, 6 | syl21anc 837 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) |
| 8 | df-pss 3951 | . . . . . . . . . 10 ⊢ (𝑦 ⊊ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) | |
| 9 | 7, 8 | sylibr 234 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ⊊ 𝑥) |
| 10 | 9 | ex 412 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ⊊ 𝑥)) |
| 11 | 1, 10 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ω → (𝑦 ∈ 𝑥 → 𝑦 ⊊ 𝑥)) |
| 12 | 11 | imdistani 568 | . . . . . 6 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → (𝑥 ∈ ω ∧ 𝑦 ⊊ 𝑥)) |
| 13 | php 9226 | . . . . . 6 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ⊊ 𝑥) → ¬ 𝑥 ≈ 𝑦) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → ¬ 𝑥 ≈ 𝑦) |
| 15 | ensymb 9021 | . . . . 5 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑦 ≈ 𝑥) | |
| 16 | 14, 15 | sylnib 328 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦 ≈ 𝑥) |
| 17 | 16 | ralrimiva 3133 | . . 3 ⊢ (𝑥 ∈ ω → ∀𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥) |
| 18 | elrncard 43528 | . . 3 ⊢ (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥)) | |
| 19 | 1, 17, 18 | sylanbrc 583 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ran card) |
| 20 | 19 | ssriv 3967 | 1 ⊢ ω ⊆ ran card |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ⊆ wss 3931 ⊊ wpss 3932 class class class wbr 5124 ran crn 5660 Oncon0 6357 ωcom 7866 ≈ cen 8961 cardccrd 9954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 |
| This theorem is referenced by: 0iscard 43532 1iscard 43533 nna1iscard 43536 |
| Copyright terms: Public domain | W3C validator |