![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omssrncard | Structured version Visualization version GIF version |
Description: All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.) |
Ref | Expression |
---|---|
omssrncard | ⊢ ω ⊆ ran card |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7893 | . . 3 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
2 | onelon 6411 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) | |
3 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ On) | |
4 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | |
5 | onelpss 6426 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥))) | |
6 | 5 | biimpa 476 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) |
7 | 2, 3, 4, 6 | syl21anc 838 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) |
8 | df-pss 3983 | . . . . . . . . . 10 ⊢ (𝑦 ⊊ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) | |
9 | 7, 8 | sylibr 234 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ⊊ 𝑥) |
10 | 9 | ex 412 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ⊊ 𝑥)) |
11 | 1, 10 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ω → (𝑦 ∈ 𝑥 → 𝑦 ⊊ 𝑥)) |
12 | 11 | imdistani 568 | . . . . . 6 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → (𝑥 ∈ ω ∧ 𝑦 ⊊ 𝑥)) |
13 | php 9245 | . . . . . 6 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ⊊ 𝑥) → ¬ 𝑥 ≈ 𝑦) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → ¬ 𝑥 ≈ 𝑦) |
15 | ensymb 9041 | . . . . 5 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑦 ≈ 𝑥) | |
16 | 14, 15 | sylnib 328 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦 ≈ 𝑥) |
17 | 16 | ralrimiva 3144 | . . 3 ⊢ (𝑥 ∈ ω → ∀𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥) |
18 | elrncard 43527 | . . 3 ⊢ (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥)) | |
19 | 1, 17, 18 | sylanbrc 583 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ran card) |
20 | 19 | ssriv 3999 | 1 ⊢ ω ⊆ ran card |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ⊆ wss 3963 ⊊ wpss 3964 class class class wbr 5148 ran crn 5690 Oncon0 6386 ωcom 7887 ≈ cen 8981 cardccrd 9973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 |
This theorem is referenced by: 0iscard 43531 1iscard 43532 nna1iscard 43535 |
Copyright terms: Public domain | W3C validator |