![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omssrncard | Structured version Visualization version GIF version |
Description: All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.) |
Ref | Expression |
---|---|
omssrncard | ⊢ ω ⊆ ran card |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7858 | . . 3 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
2 | onelon 6383 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) | |
3 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ On) | |
4 | simpr 484 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | |
5 | onelpss 6398 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥))) | |
6 | 5 | biimpa 476 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) |
7 | 2, 3, 4, 6 | syl21anc 835 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) |
8 | df-pss 3962 | . . . . . . . . . 10 ⊢ (𝑦 ⊊ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) | |
9 | 7, 8 | sylibr 233 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ⊊ 𝑥) |
10 | 9 | ex 412 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ⊊ 𝑥)) |
11 | 1, 10 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ω → (𝑦 ∈ 𝑥 → 𝑦 ⊊ 𝑥)) |
12 | 11 | imdistani 568 | . . . . . 6 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → (𝑥 ∈ ω ∧ 𝑦 ⊊ 𝑥)) |
13 | php 9212 | . . . . . 6 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ⊊ 𝑥) → ¬ 𝑥 ≈ 𝑦) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → ¬ 𝑥 ≈ 𝑦) |
15 | ensymb 9000 | . . . . 5 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑦 ≈ 𝑥) | |
16 | 14, 15 | sylnib 328 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦 ≈ 𝑥) |
17 | 16 | ralrimiva 3140 | . . 3 ⊢ (𝑥 ∈ ω → ∀𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥) |
18 | elrncard 42869 | . . 3 ⊢ (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥)) | |
19 | 1, 17, 18 | sylanbrc 582 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ran card) |
20 | 19 | ssriv 3981 | 1 ⊢ ω ⊆ ran card |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ⊆ wss 3943 ⊊ wpss 3944 class class class wbr 5141 ran crn 5670 Oncon0 6358 ωcom 7852 ≈ cen 8938 cardccrd 9932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-om 7853 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 |
This theorem is referenced by: 0iscard 42873 1iscard 42874 nna1iscard 42877 |
Copyright terms: Public domain | W3C validator |