![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omssrncard | Structured version Visualization version GIF version |
Description: All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.) |
Ref | Expression |
---|---|
omssrncard | ⊢ ω ⊆ ran card |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7873 | . . 3 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
2 | onelon 6389 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) | |
3 | simpl 481 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ On) | |
4 | simpr 483 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | |
5 | onelpss 6404 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦 ∈ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥))) | |
6 | 5 | biimpa 475 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) |
7 | 2, 3, 4, 6 | syl21anc 836 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) |
8 | df-pss 3960 | . . . . . . . . . 10 ⊢ (𝑦 ⊊ 𝑥 ↔ (𝑦 ⊆ 𝑥 ∧ 𝑦 ≠ 𝑥)) | |
9 | 7, 8 | sylibr 233 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ⊊ 𝑥) |
10 | 9 | ex 411 | . . . . . . . 8 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ⊊ 𝑥)) |
11 | 1, 10 | syl 17 | . . . . . . 7 ⊢ (𝑥 ∈ ω → (𝑦 ∈ 𝑥 → 𝑦 ⊊ 𝑥)) |
12 | 11 | imdistani 567 | . . . . . 6 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → (𝑥 ∈ ω ∧ 𝑦 ⊊ 𝑥)) |
13 | php 9231 | . . . . . 6 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ⊊ 𝑥) → ¬ 𝑥 ≈ 𝑦) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → ¬ 𝑥 ≈ 𝑦) |
15 | ensymb 9019 | . . . . 5 ⊢ (𝑥 ≈ 𝑦 ↔ 𝑦 ≈ 𝑥) | |
16 | 14, 15 | sylnib 327 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ 𝑥) → ¬ 𝑦 ≈ 𝑥) |
17 | 16 | ralrimiva 3136 | . . 3 ⊢ (𝑥 ∈ ω → ∀𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥) |
18 | elrncard 43031 | . . 3 ⊢ (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 ¬ 𝑦 ≈ 𝑥)) | |
19 | 1, 17, 18 | sylanbrc 581 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ran card) |
20 | 19 | ssriv 3976 | 1 ⊢ ω ⊆ ran card |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∈ wcel 2098 ≠ wne 2930 ∀wral 3051 ⊆ wss 3940 ⊊ wpss 3941 class class class wbr 5143 ran crn 5673 Oncon0 6364 ωcom 7867 ≈ cen 8957 cardccrd 9956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7868 df-1o 8483 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-card 9960 |
This theorem is referenced by: 0iscard 43035 1iscard 43036 nna1iscard 43039 |
Copyright terms: Public domain | W3C validator |