Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omssrncard Structured version   Visualization version   GIF version

Theorem omssrncard 43502
Description: All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023.)
Assertion
Ref Expression
omssrncard ω ⊆ ran card

Proof of Theorem omssrncard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnon 7909 . . 3 (𝑥 ∈ ω → 𝑥 ∈ On)
2 onelon 6420 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
3 simpl 482 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑥 ∈ On)
4 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
5 onelpss 6435 . . . . . . . . . . . 12 ((𝑦 ∈ On ∧ 𝑥 ∈ On) → (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥)))
65biimpa 476 . . . . . . . . . . 11 (((𝑦 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦𝑥) → (𝑦𝑥𝑦𝑥))
72, 3, 4, 6syl21anc 837 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦𝑥𝑦𝑥))
8 df-pss 3996 . . . . . . . . . 10 (𝑦𝑥 ↔ (𝑦𝑥𝑦𝑥))
97, 8sylibr 234 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
109ex 412 . . . . . . . 8 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
111, 10syl 17 . . . . . . 7 (𝑥 ∈ ω → (𝑦𝑥𝑦𝑥))
1211imdistani 568 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦𝑥) → (𝑥 ∈ ω ∧ 𝑦𝑥))
13 php 9273 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
1412, 13syl 17 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
15 ensymb 9062 . . . . 5 (𝑥𝑦𝑦𝑥)
1614, 15sylnib 328 . . . 4 ((𝑥 ∈ ω ∧ 𝑦𝑥) → ¬ 𝑦𝑥)
1716ralrimiva 3152 . . 3 (𝑥 ∈ ω → ∀𝑦𝑥 ¬ 𝑦𝑥)
18 elrncard 43499 . . 3 (𝑥 ∈ ran card ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 ¬ 𝑦𝑥))
191, 17, 18sylanbrc 582 . 2 (𝑥 ∈ ω → 𝑥 ∈ ran card)
2019ssriv 4012 1 ω ⊆ ran card
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wne 2946  wral 3067  wss 3976  wpss 3977   class class class wbr 5166  ran crn 5701  Oncon0 6395  ωcom 7903  cen 9000  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008
This theorem is referenced by:  0iscard  43503  1iscard  43504  nna1iscard  43507
  Copyright terms: Public domain W3C validator