![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordeldifsucon | Structured version Visualization version GIF version |
Description: Membership in the difference of ordinal and successor ordinal. (Contributed by RP, 16-Jan-2025.) |
Ref | Expression |
---|---|
ordeldifsucon | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3959 | . 2 ⊢ (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵)) | |
2 | simplr 768 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ On) | |
3 | ordelord 6387 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) | |
4 | 3 | adantlr 714 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) |
5 | ordelsuc 7808 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ Ord 𝐶) → (𝐵 ∈ 𝐶 ↔ suc 𝐵 ⊆ 𝐶)) | |
6 | 2, 4, 5 | syl2anc 585 | . . . 4 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ 𝐴) → (𝐵 ∈ 𝐶 ↔ suc 𝐵 ⊆ 𝐶)) |
7 | eloni 6375 | . . . . . 6 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
8 | ordsuci 7796 | . . . . . 6 ⊢ (Ord 𝐵 → Ord suc 𝐵) | |
9 | 2, 7, 8 | 3syl 18 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ 𝐴) → Ord suc 𝐵) |
10 | ordtri1 6398 | . . . . 5 ⊢ ((Ord suc 𝐵 ∧ Ord 𝐶) → (suc 𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵)) | |
11 | 9, 4, 10 | syl2anc 585 | . . . 4 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ 𝐴) → (suc 𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵)) |
12 | 6, 11 | bitr2d 280 | . . 3 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ 𝐴) → (¬ 𝐶 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝐶)) |
13 | 12 | pm5.32da 580 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → ((𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶))) |
14 | 1, 13 | bitrid 283 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ∖ cdif 3946 ⊆ wss 3949 Ord word 6364 Oncon0 6365 suc csuc 6367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-on 6369 df-suc 6371 |
This theorem is referenced by: orddif0suc 42018 cantnfresb 42074 |
Copyright terms: Public domain | W3C validator |