| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordeldifsucon | Structured version Visualization version GIF version | ||
| Description: Membership in the difference of ordinal and successor ordinal. (Contributed by RP, 16-Jan-2025.) |
| Ref | Expression |
|---|---|
| ordeldifsucon | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3908 | . 2 ⊢ (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵)) | |
| 2 | simplr 768 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ On) | |
| 3 | ordelord 6335 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) | |
| 4 | 3 | adantlr 715 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) |
| 5 | ordelsuc 7758 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ Ord 𝐶) → (𝐵 ∈ 𝐶 ↔ suc 𝐵 ⊆ 𝐶)) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . . 4 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ 𝐴) → (𝐵 ∈ 𝐶 ↔ suc 𝐵 ⊆ 𝐶)) |
| 7 | eloni 6323 | . . . . . 6 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 8 | ordsuci 7749 | . . . . . 6 ⊢ (Ord 𝐵 → Ord suc 𝐵) | |
| 9 | 2, 7, 8 | 3syl 18 | . . . . 5 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ 𝐴) → Ord suc 𝐵) |
| 10 | ordtri1 6346 | . . . . 5 ⊢ ((Ord suc 𝐵 ∧ Ord 𝐶) → (suc 𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵)) | |
| 11 | 9, 4, 10 | syl2anc 584 | . . . 4 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ 𝐴) → (suc 𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵)) |
| 12 | 6, 11 | bitr2d 280 | . . 3 ⊢ (((Ord 𝐴 ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ 𝐴) → (¬ 𝐶 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝐶)) |
| 13 | 12 | pm5.32da 579 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → ((𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶))) |
| 14 | 1, 13 | bitrid 283 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 Ord word 6312 Oncon0 6313 suc csuc 6315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6316 df-on 6317 df-suc 6319 |
| This theorem is referenced by: orddif0suc 43388 cantnfresb 43444 |
| Copyright terms: Public domain | W3C validator |