Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordeldifsucon Structured version   Visualization version   GIF version

Theorem ordeldifsucon 42009
Description: Membership in the difference of ordinal and successor ordinal. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
ordeldifsucon ((Ord 𝐴𝐵 ∈ On) → (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶𝐴𝐵𝐶)))

Proof of Theorem ordeldifsucon
StepHypRef Expression
1 eldif 3959 . 2 (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵))
2 simplr 768 . . . . 5 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → 𝐵 ∈ On)
3 ordelord 6387 . . . . . 6 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
43adantlr 714 . . . . 5 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → Ord 𝐶)
5 ordelsuc 7808 . . . . 5 ((𝐵 ∈ On ∧ Ord 𝐶) → (𝐵𝐶 ↔ suc 𝐵𝐶))
62, 4, 5syl2anc 585 . . . 4 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → (𝐵𝐶 ↔ suc 𝐵𝐶))
7 eloni 6375 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
8 ordsuci 7796 . . . . . 6 (Ord 𝐵 → Ord suc 𝐵)
92, 7, 83syl 18 . . . . 5 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → Ord suc 𝐵)
10 ordtri1 6398 . . . . 5 ((Ord suc 𝐵 ∧ Ord 𝐶) → (suc 𝐵𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵))
119, 4, 10syl2anc 585 . . . 4 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → (suc 𝐵𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵))
126, 11bitr2d 280 . . 3 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → (¬ 𝐶 ∈ suc 𝐵𝐵𝐶))
1312pm5.32da 580 . 2 ((Ord 𝐴𝐵 ∈ On) → ((𝐶𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵) ↔ (𝐶𝐴𝐵𝐶)))
141, 13bitrid 283 1 ((Ord 𝐴𝐵 ∈ On) → (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶𝐴𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  cdif 3946  wss 3949  Ord word 6364  Oncon0 6365  suc csuc 6367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-suc 6371
This theorem is referenced by:  orddif0suc  42018  cantnfresb  42074
  Copyright terms: Public domain W3C validator