Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordeldifsucon Structured version   Visualization version   GIF version

Theorem ordeldifsucon 43221
Description: Membership in the difference of ordinal and successor ordinal. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
ordeldifsucon ((Ord 𝐴𝐵 ∈ On) → (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶𝐴𝐵𝐶)))

Proof of Theorem ordeldifsucon
StepHypRef Expression
1 eldif 3986 . 2 (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵))
2 simplr 768 . . . . 5 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → 𝐵 ∈ On)
3 ordelord 6417 . . . . . 6 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
43adantlr 714 . . . . 5 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → Ord 𝐶)
5 ordelsuc 7856 . . . . 5 ((𝐵 ∈ On ∧ Ord 𝐶) → (𝐵𝐶 ↔ suc 𝐵𝐶))
62, 4, 5syl2anc 583 . . . 4 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → (𝐵𝐶 ↔ suc 𝐵𝐶))
7 eloni 6405 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
8 ordsuci 7844 . . . . . 6 (Ord 𝐵 → Ord suc 𝐵)
92, 7, 83syl 18 . . . . 5 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → Ord suc 𝐵)
10 ordtri1 6428 . . . . 5 ((Ord suc 𝐵 ∧ Ord 𝐶) → (suc 𝐵𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵))
119, 4, 10syl2anc 583 . . . 4 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → (suc 𝐵𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵))
126, 11bitr2d 280 . . 3 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → (¬ 𝐶 ∈ suc 𝐵𝐵𝐶))
1312pm5.32da 578 . 2 ((Ord 𝐴𝐵 ∈ On) → ((𝐶𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵) ↔ (𝐶𝐴𝐵𝐶)))
141, 13bitrid 283 1 ((Ord 𝐴𝐵 ∈ On) → (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶𝐴𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  cdif 3973  wss 3976  Ord word 6394  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by:  orddif0suc  43230  cantnfresb  43286
  Copyright terms: Public domain W3C validator