Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordeldifsucon Structured version   Visualization version   GIF version

Theorem ordeldifsucon 43298
Description: Membership in the difference of ordinal and successor ordinal. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
ordeldifsucon ((Ord 𝐴𝐵 ∈ On) → (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶𝐴𝐵𝐶)))

Proof of Theorem ordeldifsucon
StepHypRef Expression
1 eldif 3912 . 2 (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵))
2 simplr 768 . . . . 5 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → 𝐵 ∈ On)
3 ordelord 6328 . . . . . 6 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
43adantlr 715 . . . . 5 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → Ord 𝐶)
5 ordelsuc 7750 . . . . 5 ((𝐵 ∈ On ∧ Ord 𝐶) → (𝐵𝐶 ↔ suc 𝐵𝐶))
62, 4, 5syl2anc 584 . . . 4 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → (𝐵𝐶 ↔ suc 𝐵𝐶))
7 eloni 6316 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
8 ordsuci 7741 . . . . . 6 (Ord 𝐵 → Ord suc 𝐵)
92, 7, 83syl 18 . . . . 5 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → Ord suc 𝐵)
10 ordtri1 6339 . . . . 5 ((Ord suc 𝐵 ∧ Ord 𝐶) → (suc 𝐵𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵))
119, 4, 10syl2anc 584 . . . 4 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → (suc 𝐵𝐶 ↔ ¬ 𝐶 ∈ suc 𝐵))
126, 11bitr2d 280 . . 3 (((Ord 𝐴𝐵 ∈ On) ∧ 𝐶𝐴) → (¬ 𝐶 ∈ suc 𝐵𝐵𝐶))
1312pm5.32da 579 . 2 ((Ord 𝐴𝐵 ∈ On) → ((𝐶𝐴 ∧ ¬ 𝐶 ∈ suc 𝐵) ↔ (𝐶𝐴𝐵𝐶)))
141, 13bitrid 283 1 ((Ord 𝐴𝐵 ∈ On) → (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶𝐴𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2111  cdif 3899  wss 3902  Ord word 6305  Oncon0 6306  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-tr 5199  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309  df-on 6310  df-suc 6312
This theorem is referenced by:  orddif0suc  43307  cantnfresb  43363
  Copyright terms: Public domain W3C validator