Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordeldif Structured version   Visualization version   GIF version

Theorem ordeldif 42718
Description: Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
ordeldif ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴𝐵) ↔ (𝐶𝐴𝐵𝐶)))

Proof of Theorem ordeldif
StepHypRef Expression
1 eldif 3959 . 2 (𝐶 ∈ (𝐴𝐵) ↔ (𝐶𝐴 ∧ ¬ 𝐶𝐵))
2 simpr 483 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → Ord 𝐵)
3 ordelord 6396 . . . . . 6 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
43adantlr 713 . . . . 5 (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶𝐴) → Ord 𝐶)
5 ordtri1 6407 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶 ↔ ¬ 𝐶𝐵))
62, 4, 5syl2an2r 683 . . . 4 (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶𝐴) → (𝐵𝐶 ↔ ¬ 𝐶𝐵))
76bicomd 222 . . 3 (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶𝐴) → (¬ 𝐶𝐵𝐵𝐶))
87pm5.32da 577 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐶𝐴 ∧ ¬ 𝐶𝐵) ↔ (𝐶𝐴𝐵𝐶)))
91, 8bitrid 282 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴𝐵) ↔ (𝐶𝐴𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wcel 2098  cdif 3946  wss 3949  Ord word 6373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-tr 5270  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-ord 6377
This theorem is referenced by:  tfsconcatlem  42796  tfsconcatfv2  42800  tfsconcatrn  42802  tfsconcatb0  42804  tfsconcatrev  42808
  Copyright terms: Public domain W3C validator