![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordeldif | Structured version Visualization version GIF version |
Description: Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025.) |
Ref | Expression |
---|---|
ordeldif | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3959 | . 2 ⊢ (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐵)) | |
2 | simpr 483 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord 𝐵) | |
3 | ordelord 6396 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) | |
4 | 3 | adantlr 713 | . . . . 5 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) |
5 | ordtri1 6407 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵)) | |
6 | 2, 4, 5 | syl2an2r 683 | . . . 4 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵)) |
7 | 6 | bicomd 222 | . . 3 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶 ∈ 𝐴) → (¬ 𝐶 ∈ 𝐵 ↔ 𝐵 ⊆ 𝐶)) |
8 | 7 | pm5.32da 577 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
9 | 1, 8 | bitrid 282 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ∖ cdif 3946 ⊆ wss 3949 Ord word 6373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-tr 5270 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6377 |
This theorem is referenced by: tfsconcatlem 42796 tfsconcatfv2 42800 tfsconcatrn 42802 tfsconcatb0 42804 tfsconcatrev 42808 |
Copyright terms: Public domain | W3C validator |