![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordeldif | Structured version Visualization version GIF version |
Description: Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025.) |
Ref | Expression |
---|---|
ordeldif | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3986 | . 2 ⊢ (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐵)) | |
2 | simpr 484 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord 𝐵) | |
3 | ordelord 6417 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) | |
4 | 3 | adantlr 714 | . . . . 5 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) |
5 | ordtri1 6428 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵)) | |
6 | 2, 4, 5 | syl2an2r 684 | . . . 4 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵)) |
7 | 6 | bicomd 223 | . . 3 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶 ∈ 𝐴) → (¬ 𝐶 ∈ 𝐵 ↔ 𝐵 ⊆ 𝐶)) |
8 | 7 | pm5.32da 578 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
9 | 1, 8 | bitrid 283 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3973 ⊆ wss 3976 Ord word 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 |
This theorem is referenced by: tfsconcatlem 43298 tfsconcatfv2 43302 tfsconcatrn 43304 tfsconcatb0 43306 tfsconcatrev 43310 |
Copyright terms: Public domain | W3C validator |