Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordeldif Structured version   Visualization version   GIF version

Theorem ordeldif 43231
Description: Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025.)
Assertion
Ref Expression
ordeldif ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴𝐵) ↔ (𝐶𝐴𝐵𝐶)))

Proof of Theorem ordeldif
StepHypRef Expression
1 eldif 3915 . 2 (𝐶 ∈ (𝐴𝐵) ↔ (𝐶𝐴 ∧ ¬ 𝐶𝐵))
2 simpr 484 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → Ord 𝐵)
3 ordelord 6333 . . . . . 6 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
43adantlr 715 . . . . 5 (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶𝐴) → Ord 𝐶)
5 ordtri1 6344 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶 ↔ ¬ 𝐶𝐵))
62, 4, 5syl2an2r 685 . . . 4 (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶𝐴) → (𝐵𝐶 ↔ ¬ 𝐶𝐵))
76bicomd 223 . . 3 (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶𝐴) → (¬ 𝐶𝐵𝐵𝐶))
87pm5.32da 579 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐶𝐴 ∧ ¬ 𝐶𝐵) ↔ (𝐶𝐴𝐵𝐶)))
91, 8bitrid 283 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴𝐵) ↔ (𝐶𝐴𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  cdif 3902  wss 3905  Ord word 6310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314
This theorem is referenced by:  tfsconcatlem  43309  tfsconcatfv2  43313  tfsconcatrn  43315  tfsconcatb0  43317  tfsconcatrev  43321
  Copyright terms: Public domain W3C validator