![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordeldif | Structured version Visualization version GIF version |
Description: Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025.) |
Ref | Expression |
---|---|
ordeldif | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3972 | . 2 ⊢ (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐵)) | |
2 | simpr 484 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord 𝐵) | |
3 | ordelord 6407 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) | |
4 | 3 | adantlr 715 | . . . . 5 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) |
5 | ordtri1 6418 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵)) | |
6 | 2, 4, 5 | syl2an2r 685 | . . . 4 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵)) |
7 | 6 | bicomd 223 | . . 3 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶 ∈ 𝐴) → (¬ 𝐶 ∈ 𝐵 ↔ 𝐵 ⊆ 𝐶)) |
8 | 7 | pm5.32da 579 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
9 | 1, 8 | bitrid 283 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 ∖ cdif 3959 ⊆ wss 3962 Ord word 6384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-ord 6388 |
This theorem is referenced by: tfsconcatlem 43325 tfsconcatfv2 43329 tfsconcatrn 43331 tfsconcatb0 43333 tfsconcatrev 43337 |
Copyright terms: Public domain | W3C validator |