| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordeldif | Structured version Visualization version GIF version | ||
| Description: Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| ordeldif | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3961 | . 2 ⊢ (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐵)) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord 𝐵) | |
| 3 | ordelord 6406 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) | |
| 4 | 3 | adantlr 715 | . . . . 5 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶 ∈ 𝐴) → Ord 𝐶) |
| 5 | ordtri1 6417 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵)) | |
| 6 | 2, 4, 5 | syl2an2r 685 | . . . 4 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶 ∈ 𝐴) → (𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵)) |
| 7 | 6 | bicomd 223 | . . 3 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐶 ∈ 𝐴) → (¬ 𝐶 ∈ 𝐵 ↔ 𝐵 ⊆ 𝐶)) |
| 8 | 7 | pm5.32da 579 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
| 9 | 1, 8 | bitrid 283 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3948 ⊆ wss 3951 Ord word 6383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 |
| This theorem is referenced by: tfsconcatlem 43349 tfsconcatfv2 43353 tfsconcatrn 43355 tfsconcatb0 43357 tfsconcatrev 43361 |
| Copyright terms: Public domain | W3C validator |