![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ordsssucb | Structured version Visualization version GIF version |
Description: An ordinal number is less than or equal to the successor of an ordinal class iff the ordinal number is either less than or equal to the ordinal class or the ordinal number is equal to the successor of the ordinal class. See also ordsssucim 42456, limsssuc 7842. (Contributed by RP, 22-Feb-2025.) |
Ref | Expression |
---|---|
ordsssucb | ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspss 4100 | . 2 ⊢ (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊊ suc 𝐵 ∨ 𝐴 = suc 𝐵)) | |
2 | ordsssuc 6454 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | |
3 | eloni 6375 | . . . . 5 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
4 | ordsuci 7799 | . . . . 5 ⊢ (Ord 𝐵 → Ord suc 𝐵) | |
5 | ordelpss 6393 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ∈ suc 𝐵 ↔ 𝐴 ⊊ suc 𝐵)) | |
6 | 3, 4, 5 | syl2an 595 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 ↔ 𝐴 ⊊ suc 𝐵)) |
7 | 2, 6 | bitrd 278 | . . 3 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊊ suc 𝐵)) |
8 | 7 | orbi1d 914 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → ((𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵) ↔ (𝐴 ⊊ suc 𝐵 ∨ 𝐴 = suc 𝐵))) |
9 | 1, 8 | bitr4id 289 | 1 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ⊆ wss 3949 ⊊ wpss 3950 Ord word 6364 Oncon0 6365 suc csuc 6367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-on 6369 df-suc 6371 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |