Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordsssucb Structured version   Visualization version   GIF version

Theorem ordsssucb 43325
Description: An ordinal number is less than or equal to the successor of an ordinal class iff the ordinal number is either less than or equal to the ordinal class or the ordinal number is equal to the successor of the ordinal class. See also ordsssucim 43392, limsssuc 7871. (Contributed by RP, 22-Feb-2025.)
Assertion
Ref Expression
ordsssucb ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴𝐵𝐴 = suc 𝐵)))

Proof of Theorem ordsssucb
StepHypRef Expression
1 sspss 4112 . 2 (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊊ suc 𝐵𝐴 = suc 𝐵))
2 ordsssuc 6475 . . . 4 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ∈ suc 𝐵))
3 eloni 6396 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
4 ordsuci 7828 . . . . 5 (Ord 𝐵 → Ord suc 𝐵)
5 ordelpss 6414 . . . . 5 ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ∈ suc 𝐵𝐴 ⊊ suc 𝐵))
63, 4, 5syl2an 596 . . . 4 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵𝐴 ⊊ suc 𝐵))
72, 6bitrd 279 . . 3 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ⊊ suc 𝐵))
87orbi1d 916 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = suc 𝐵) ↔ (𝐴 ⊊ suc 𝐵𝐴 = suc 𝐵)))
91, 8bitr4id 290 1 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴𝐵𝐴 = suc 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wss 3963  wpss 3964  Ord word 6385  Oncon0 6386  suc csuc 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-suc 6392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator