Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordsssucb Structured version   Visualization version   GIF version

Theorem ordsssucb 43328
Description: An ordinal number is less than or equal to the successor of an ordinal class iff the ordinal number is either less than or equal to the ordinal class or the ordinal number is equal to the successor of the ordinal class. See also ordsssucim 43395, limsssuc 7783. (Contributed by RP, 22-Feb-2025.)
Assertion
Ref Expression
ordsssucb ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴𝐵𝐴 = suc 𝐵)))

Proof of Theorem ordsssucb
StepHypRef Expression
1 sspss 4053 . 2 (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊊ suc 𝐵𝐴 = suc 𝐵))
2 ordsssuc 6398 . . . 4 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ∈ suc 𝐵))
3 eloni 6317 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
4 ordsuci 7744 . . . . 5 (Ord 𝐵 → Ord suc 𝐵)
5 ordelpss 6335 . . . . 5 ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ∈ suc 𝐵𝐴 ⊊ suc 𝐵))
63, 4, 5syl2an 596 . . . 4 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵𝐴 ⊊ suc 𝐵))
72, 6bitrd 279 . . 3 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ⊊ suc 𝐵))
87orbi1d 916 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = suc 𝐵) ↔ (𝐴 ⊊ suc 𝐵𝐴 = suc 𝐵)))
91, 8bitr4id 290 1 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴𝐵𝐴 = suc 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wss 3903  wpss 3904  Ord word 6306  Oncon0 6307  suc csuc 6309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311  df-suc 6313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator