| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordsssucb | Structured version Visualization version GIF version | ||
| Description: An ordinal number is less than or equal to the successor of an ordinal class iff the ordinal number is either less than or equal to the ordinal class or the ordinal number is equal to the successor of the ordinal class. See also ordsssucim 43393, limsssuc 7850. (Contributed by RP, 22-Feb-2025.) |
| Ref | Expression |
|---|---|
| ordsssucb | ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspss 4082 | . 2 ⊢ (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊊ suc 𝐵 ∨ 𝐴 = suc 𝐵)) | |
| 2 | ordsssuc 6448 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | |
| 3 | eloni 6367 | . . . . 5 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 4 | ordsuci 7807 | . . . . 5 ⊢ (Ord 𝐵 → Ord suc 𝐵) | |
| 5 | ordelpss 6385 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ∈ suc 𝐵 ↔ 𝐴 ⊊ suc 𝐵)) | |
| 6 | 3, 4, 5 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 ↔ 𝐴 ⊊ suc 𝐵)) |
| 7 | 2, 6 | bitrd 279 | . . 3 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊊ suc 𝐵)) |
| 8 | 7 | orbi1d 916 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → ((𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵) ↔ (𝐴 ⊊ suc 𝐵 ∨ 𝐴 = suc 𝐵))) |
| 9 | 1, 8 | bitr4id 290 | 1 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ⊊ wpss 3932 Ord word 6356 Oncon0 6357 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |