Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordsssucb Structured version   Visualization version   GIF version

Theorem ordsssucb 43317
Description: An ordinal number is less than or equal to the successor of an ordinal class iff the ordinal number is either less than or equal to the ordinal class or the ordinal number is equal to the successor of the ordinal class. See also ordsssucim 43384, limsssuc 7806. (Contributed by RP, 22-Feb-2025.)
Assertion
Ref Expression
ordsssucb ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴𝐵𝐴 = suc 𝐵)))

Proof of Theorem ordsssucb
StepHypRef Expression
1 sspss 4061 . 2 (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊊ suc 𝐵𝐴 = suc 𝐵))
2 ordsssuc 6411 . . . 4 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ∈ suc 𝐵))
3 eloni 6330 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
4 ordsuci 7764 . . . . 5 (Ord 𝐵 → Ord suc 𝐵)
5 ordelpss 6348 . . . . 5 ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ∈ suc 𝐵𝐴 ⊊ suc 𝐵))
63, 4, 5syl2an 596 . . . 4 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵𝐴 ⊊ suc 𝐵))
72, 6bitrd 279 . . 3 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵𝐴 ⊊ suc 𝐵))
87orbi1d 916 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = suc 𝐵) ↔ (𝐴 ⊊ suc 𝐵𝐴 = suc 𝐵)))
91, 8bitr4id 290 1 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴𝐵𝐴 = suc 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wss 3911  wpss 3912  Ord word 6319  Oncon0 6320  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-suc 6326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator