| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ordsssucb | Structured version Visualization version GIF version | ||
| Description: An ordinal number is less than or equal to the successor of an ordinal class iff the ordinal number is either less than or equal to the ordinal class or the ordinal number is equal to the successor of the ordinal class. See also ordsssucim 43398, limsssuc 7829. (Contributed by RP, 22-Feb-2025.) |
| Ref | Expression |
|---|---|
| ordsssucb | ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspss 4068 | . 2 ⊢ (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊊ suc 𝐵 ∨ 𝐴 = suc 𝐵)) | |
| 2 | ordsssuc 6426 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ suc 𝐵)) | |
| 3 | eloni 6345 | . . . . 5 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 4 | ordsuci 7787 | . . . . 5 ⊢ (Ord 𝐵 → Ord suc 𝐵) | |
| 5 | ordelpss 6363 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord suc 𝐵) → (𝐴 ∈ suc 𝐵 ↔ 𝐴 ⊊ suc 𝐵)) | |
| 6 | 3, 4, 5 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ suc 𝐵 ↔ 𝐴 ⊊ suc 𝐵)) |
| 7 | 2, 6 | bitrd 279 | . . 3 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊊ suc 𝐵)) |
| 8 | 7 | orbi1d 916 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → ((𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵) ↔ (𝐴 ⊊ suc 𝐵 ∨ 𝐴 = suc 𝐵))) |
| 9 | 1, 8 | bitr4id 290 | 1 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ⊊ wpss 3918 Ord word 6334 Oncon0 6335 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-suc 6341 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |