Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordiso | Structured version Visualization version GIF version |
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ordiso | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resiexg 7748 | . . . . 5 ⊢ (𝐴 ∈ On → ( I ↾ 𝐴) ∈ V) | |
2 | isoid 7193 | . . . . 5 ⊢ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) | |
3 | isoeq1 7181 | . . . . . 6 ⊢ (𝑓 = ( I ↾ 𝐴) → (𝑓 Isom E , E (𝐴, 𝐴) ↔ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴))) | |
4 | 3 | spcegv 3534 | . . . . 5 ⊢ (( I ↾ 𝐴) ∈ V → (( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴))) |
5 | 1, 2, 4 | mpisyl 21 | . . . 4 ⊢ (𝐴 ∈ On → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)) |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)) |
7 | isoeq5 7185 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑓 Isom E , E (𝐴, 𝐴) ↔ 𝑓 Isom E , E (𝐴, 𝐵))) | |
8 | 7 | exbidv 1927 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐴) ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
9 | 6, 8 | syl5ibcom 244 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
10 | eloni 6273 | . . . 4 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
11 | eloni 6273 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
12 | ordiso2 9235 | . . . . . 6 ⊢ ((𝑓 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) | |
13 | 12 | 3coml 1125 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ 𝑓 Isom E , E (𝐴, 𝐵)) → 𝐴 = 𝐵) |
14 | 13 | 3expia 1119 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
15 | 10, 11, 14 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
16 | 15 | exlimdv 1939 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
17 | 9, 16 | impbid 211 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∃wex 1785 ∈ wcel 2109 Vcvv 3430 I cid 5487 E cep 5493 ↾ cres 5590 Ord word 6262 Oncon0 6263 Isom wiso 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |