MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordiso Structured version   Visualization version   GIF version

Theorem ordiso 9205
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ordiso ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem ordiso
StepHypRef Expression
1 resiexg 7735 . . . . 5 (𝐴 ∈ On → ( I ↾ 𝐴) ∈ V)
2 isoid 7180 . . . . 5 ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴)
3 isoeq1 7168 . . . . . 6 (𝑓 = ( I ↾ 𝐴) → (𝑓 Isom E , E (𝐴, 𝐴) ↔ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴)))
43spcegv 3526 . . . . 5 (( I ↾ 𝐴) ∈ V → (( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)))
51, 2, 4mpisyl 21 . . . 4 (𝐴 ∈ On → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴))
65adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴))
7 isoeq5 7172 . . . 4 (𝐴 = 𝐵 → (𝑓 Isom E , E (𝐴, 𝐴) ↔ 𝑓 Isom E , E (𝐴, 𝐵)))
87exbidv 1925 . . 3 (𝐴 = 𝐵 → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐴) ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
96, 8syl5ibcom 244 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
10 eloni 6261 . . . 4 (𝐴 ∈ On → Ord 𝐴)
11 eloni 6261 . . . 4 (𝐵 ∈ On → Ord 𝐵)
12 ordiso2 9204 . . . . . 6 ((𝑓 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵)
13123coml 1125 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵𝑓 Isom E , E (𝐴, 𝐵)) → 𝐴 = 𝐵)
14133expia 1119 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵))
1510, 11, 14syl2an 595 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵))
1615exlimdv 1937 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵))
179, 16impbid 211 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422   I cid 5479   E cep 5485  cres 5582  Ord word 6250  Oncon0 6251   Isom wiso 6419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator