MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordiso Structured version   Visualization version   GIF version

Theorem ordiso 9556
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ordiso ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem ordiso
StepHypRef Expression
1 resiexg 7934 . . . . 5 (𝐴 ∈ On → ( I ↾ 𝐴) ∈ V)
2 isoid 7349 . . . . 5 ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴)
3 isoeq1 7337 . . . . . 6 (𝑓 = ( I ↾ 𝐴) → (𝑓 Isom E , E (𝐴, 𝐴) ↔ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴)))
43spcegv 3597 . . . . 5 (( I ↾ 𝐴) ∈ V → (( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)))
51, 2, 4mpisyl 21 . . . 4 (𝐴 ∈ On → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴))
65adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴))
7 isoeq5 7341 . . . 4 (𝐴 = 𝐵 → (𝑓 Isom E , E (𝐴, 𝐴) ↔ 𝑓 Isom E , E (𝐴, 𝐵)))
87exbidv 1921 . . 3 (𝐴 = 𝐵 → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐴) ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
96, 8syl5ibcom 245 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
10 eloni 6394 . . . 4 (𝐴 ∈ On → Ord 𝐴)
11 eloni 6394 . . . 4 (𝐵 ∈ On → Ord 𝐵)
12 ordiso2 9555 . . . . . 6 ((𝑓 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵)
13123coml 1128 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵𝑓 Isom E , E (𝐴, 𝐵)) → 𝐴 = 𝐵)
14133expia 1122 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵))
1510, 11, 14syl2an 596 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵))
1615exlimdv 1933 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵))
179, 16impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  Vcvv 3480   I cid 5577   E cep 5583  cres 5687  Ord word 6383  Oncon0 6384   Isom wiso 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator