MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordiso Structured version   Visualization version   GIF version

Theorem ordiso 9476
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
ordiso ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem ordiso
StepHypRef Expression
1 resiexg 7891 . . . . 5 (𝐴 ∈ On → ( I ↾ 𝐴) ∈ V)
2 isoid 7307 . . . . 5 ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴)
3 isoeq1 7295 . . . . . 6 (𝑓 = ( I ↾ 𝐴) → (𝑓 Isom E , E (𝐴, 𝐴) ↔ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴)))
43spcegv 3566 . . . . 5 (( I ↾ 𝐴) ∈ V → (( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)))
51, 2, 4mpisyl 21 . . . 4 (𝐴 ∈ On → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴))
65adantr 480 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴))
7 isoeq5 7299 . . . 4 (𝐴 = 𝐵 → (𝑓 Isom E , E (𝐴, 𝐴) ↔ 𝑓 Isom E , E (𝐴, 𝐵)))
87exbidv 1921 . . 3 (𝐴 = 𝐵 → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐴) ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
96, 8syl5ibcom 245 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
10 eloni 6345 . . . 4 (𝐴 ∈ On → Ord 𝐴)
11 eloni 6345 . . . 4 (𝐵 ∈ On → Ord 𝐵)
12 ordiso2 9475 . . . . . 6 ((𝑓 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵)
13123coml 1127 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵𝑓 Isom E , E (𝐴, 𝐵)) → 𝐴 = 𝐵)
14133expia 1121 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵))
1510, 11, 14syl2an 596 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵))
1615exlimdv 1933 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵))
179, 16impbid 212 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450   I cid 5535   E cep 5540  cres 5643  Ord word 6334  Oncon0 6335   Isom wiso 6515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator