![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordiso | Structured version Visualization version GIF version |
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ordiso | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resiexg 7381 | . . . . 5 ⊢ (𝐴 ∈ On → ( I ↾ 𝐴) ∈ V) | |
2 | isoid 6851 | . . . . 5 ⊢ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) | |
3 | isoeq1 6839 | . . . . . 6 ⊢ (𝑓 = ( I ↾ 𝐴) → (𝑓 Isom E , E (𝐴, 𝐴) ↔ ( I ↾ 𝐴) Isom E , E (𝐴, 𝐴))) | |
4 | 3 | spcegv 3495 | . . . . 5 ⊢ (( I ↾ 𝐴) ∈ V → (( I ↾ 𝐴) Isom E , E (𝐴, 𝐴) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴))) |
5 | 1, 2, 4 | mpisyl 21 | . . . 4 ⊢ (𝐴 ∈ On → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)) |
6 | 5 | adantr 474 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐴)) |
7 | isoeq5 6843 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑓 Isom E , E (𝐴, 𝐴) ↔ 𝑓 Isom E , E (𝐴, 𝐵))) | |
8 | 7 | exbidv 1964 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐴) ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
9 | 6, 8 | syl5ibcom 237 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
10 | eloni 5986 | . . . 4 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
11 | eloni 5986 | . . . 4 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
12 | ordiso2 8709 | . . . . . 6 ⊢ ((𝑓 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) | |
13 | 12 | 3coml 1118 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ 𝑓 Isom E , E (𝐴, 𝐵)) → 𝐴 = 𝐵) |
14 | 13 | 3expia 1111 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
15 | 10, 11, 14 | syl2an 589 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
16 | 15 | exlimdv 1976 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∃𝑓 𝑓 Isom E , E (𝐴, 𝐵) → 𝐴 = 𝐵)) |
17 | 9, 16 | impbid 204 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∃wex 1823 ∈ wcel 2106 Vcvv 3397 I cid 5260 E cep 5265 ↾ cres 5357 Ord word 5975 Oncon0 5976 Isom wiso 6136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |