| Step | Hyp | Ref
| Expression |
| 1 | | simplll 774 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → 𝜑) |
| 2 | | eldifi 4106 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)}) → 𝑣 ∈ 𝑃) |
| 3 | 2 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → 𝑣 ∈ 𝑃) |
| 4 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → 𝑧 ⊆ 𝐵) |
| 5 | 4 | sselda 3958 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → 𝑢 ∈ 𝐵) |
| 6 | 5 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → 𝑢 ∈ 𝐵) |
| 7 | | lbspropd.s2 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦)) |
| 8 | 7 | oveqrspc2v 7432 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑃 ∧ 𝑢 ∈ 𝐵)) → (𝑣( ·𝑠
‘𝐾)𝑢) = (𝑣( ·𝑠
‘𝐿)𝑢)) |
| 9 | 1, 3, 6, 8 | syl12anc 836 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → (𝑣( ·𝑠
‘𝐾)𝑢) = (𝑣( ·𝑠
‘𝐿)𝑢)) |
| 10 | | lbspropd.b1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| 11 | | lbspropd.b2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| 12 | | lbspropd.w |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
| 13 | | lbspropd.p |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 14 | | lbspropd.s1 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) ∈ 𝑊) |
| 15 | | lbspropd.p1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
| 16 | | lbspropd.f |
. . . . . . . . . . . . . . . . 17
⊢ 𝐹 = (Scalar‘𝐾) |
| 17 | 16 | fveq2i 6879 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐹) =
(Base‘(Scalar‘𝐾)) |
| 18 | 15, 17 | eqtrdi 2786 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) |
| 19 | | lbspropd.p2 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
| 20 | | lbspropd.g |
. . . . . . . . . . . . . . . . 17
⊢ 𝐺 = (Scalar‘𝐿) |
| 21 | 20 | fveq2i 6879 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐺) =
(Base‘(Scalar‘𝐿)) |
| 22 | 19, 21 | eqtrdi 2786 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) |
| 23 | | lbspropd.v1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
| 24 | | lbspropd.v2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐿 ∈ 𝑌) |
| 25 | 10, 11, 12, 13, 14, 7, 18, 22, 23, 24 | lsppropd 20976 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
| 26 | 1, 25 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → (LSpan‘𝐾) = (LSpan‘𝐿)) |
| 27 | 26 | fveq1d 6878 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) = ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))) |
| 28 | 9, 27 | eleq12d 2828 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → ((𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) ↔ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) |
| 29 | 28 | notbid 318 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → (¬ (𝑣(
·𝑠 ‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) ↔ ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) |
| 30 | 29 | ralbidva 3161 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (∀𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) ↔ ∀𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) |
| 31 | 15 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → 𝑃 = (Base‘𝐹)) |
| 32 | 31 | difeq1d 4100 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (𝑃 ∖ {(0g‘𝐹)}) = ((Base‘𝐹) ∖
{(0g‘𝐹)})) |
| 33 | 32 | raleqdv 3305 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (∀𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) ↔ ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})))) |
| 34 | 19 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → 𝑃 = (Base‘𝐺)) |
| 35 | | lbspropd.a |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 36 | 15, 19, 35 | grpidpropd 18640 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0g‘𝐹) = (0g‘𝐺)) |
| 37 | 36 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (0g‘𝐹) = (0g‘𝐺)) |
| 38 | 37 | sneqd 4613 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → {(0g‘𝐹)} = {(0g‘𝐺)}) |
| 39 | 34, 38 | difeq12d 4102 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (𝑃 ∖ {(0g‘𝐹)}) = ((Base‘𝐺) ∖
{(0g‘𝐺)})) |
| 40 | 39 | raleqdv 3305 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (∀𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})) ↔ ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) |
| 41 | 30, 33, 40 | 3bitr3d 309 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) ↔ ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) |
| 42 | 41 | ralbidva 3161 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → (∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) ↔ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) |
| 43 | 42 | anbi2d 630 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → ((((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢}))) ↔ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))))) |
| 44 | 43 | pm5.32da 579 |
. . . . 5
⊢ (𝜑 → ((𝑧 ⊆ 𝐵 ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})))) ↔ (𝑧 ⊆ 𝐵 ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))))) |
| 45 | 10 | sseq2d 3991 |
. . . . . 6
⊢ (𝜑 → (𝑧 ⊆ 𝐵 ↔ 𝑧 ⊆ (Base‘𝐾))) |
| 46 | 45 | anbi1d 631 |
. . . . 5
⊢ (𝜑 → ((𝑧 ⊆ 𝐵 ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})))) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})))))) |
| 47 | 11 | sseq2d 3991 |
. . . . . 6
⊢ (𝜑 → (𝑧 ⊆ 𝐵 ↔ 𝑧 ⊆ (Base‘𝐿))) |
| 48 | 25 | fveq1d 6878 |
. . . . . . . 8
⊢ (𝜑 → ((LSpan‘𝐾)‘𝑧) = ((LSpan‘𝐿)‘𝑧)) |
| 49 | 10, 11 | eqtr3d 2772 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| 50 | 48, 49 | eqeq12d 2751 |
. . . . . . 7
⊢ (𝜑 → (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ↔ ((LSpan‘𝐿)‘𝑧) = (Base‘𝐿))) |
| 51 | 50 | anbi1d 631 |
. . . . . 6
⊢ (𝜑 → ((((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))) ↔ (((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))))) |
| 52 | 47, 51 | anbi12d 632 |
. . . . 5
⊢ (𝜑 → ((𝑧 ⊆ 𝐵 ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ (((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))))) |
| 53 | 44, 46, 52 | 3bitr3d 309 |
. . . 4
⊢ (𝜑 → ((𝑧 ⊆ (Base‘𝐾) ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})))) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ (((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))))) |
| 54 | | 3anass 1094 |
. . . 4
⊢ ((𝑧 ⊆ (Base‘𝐾) ∧ ((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢}))) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢}))))) |
| 55 | | 3anass 1094 |
. . . 4
⊢ ((𝑧 ⊆ (Base‘𝐿) ∧ ((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ (((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))))) |
| 56 | 53, 54, 55 | 3bitr4g 314 |
. . 3
⊢ (𝜑 → ((𝑧 ⊆ (Base‘𝐾) ∧ ((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢}))) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))))) |
| 57 | | eqid 2735 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 58 | | eqid 2735 |
. . . . 5
⊢ (
·𝑠 ‘𝐾) = ( ·𝑠
‘𝐾) |
| 59 | | eqid 2735 |
. . . . 5
⊢
(Base‘𝐹) =
(Base‘𝐹) |
| 60 | | eqid 2735 |
. . . . 5
⊢
(LBasis‘𝐾) =
(LBasis‘𝐾) |
| 61 | | eqid 2735 |
. . . . 5
⊢
(LSpan‘𝐾) =
(LSpan‘𝐾) |
| 62 | | eqid 2735 |
. . . . 5
⊢
(0g‘𝐹) = (0g‘𝐹) |
| 63 | 57, 16, 58, 59, 60, 61, 62 | islbs 21034 |
. . . 4
⊢ (𝐾 ∈ 𝑋 → (𝑧 ∈ (LBasis‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢}))))) |
| 64 | 23, 63 | syl 17 |
. . 3
⊢ (𝜑 → (𝑧 ∈ (LBasis‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢}))))) |
| 65 | | eqid 2735 |
. . . . 5
⊢
(Base‘𝐿) =
(Base‘𝐿) |
| 66 | | eqid 2735 |
. . . . 5
⊢ (
·𝑠 ‘𝐿) = ( ·𝑠
‘𝐿) |
| 67 | | eqid 2735 |
. . . . 5
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 68 | | eqid 2735 |
. . . . 5
⊢
(LBasis‘𝐿) =
(LBasis‘𝐿) |
| 69 | | eqid 2735 |
. . . . 5
⊢
(LSpan‘𝐿) =
(LSpan‘𝐿) |
| 70 | | eqid 2735 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 71 | 65, 20, 66, 67, 68, 69, 70 | islbs 21034 |
. . . 4
⊢ (𝐿 ∈ 𝑌 → (𝑧 ∈ (LBasis‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))))) |
| 72 | 24, 71 | syl 17 |
. . 3
⊢ (𝜑 → (𝑧 ∈ (LBasis‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))))) |
| 73 | 56, 64, 72 | 3bitr4d 311 |
. 2
⊢ (𝜑 → (𝑧 ∈ (LBasis‘𝐾) ↔ 𝑧 ∈ (LBasis‘𝐿))) |
| 74 | 73 | eqrdv 2733 |
1
⊢ (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿)) |