Step | Hyp | Ref
| Expression |
1 | | simplll 771 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → 𝜑) |
2 | | eldifi 4057 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)}) → 𝑣 ∈ 𝑃) |
3 | 2 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → 𝑣 ∈ 𝑃) |
4 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → 𝑧 ⊆ 𝐵) |
5 | 4 | sselda 3917 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → 𝑢 ∈ 𝐵) |
6 | 5 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → 𝑢 ∈ 𝐵) |
7 | | lbspropd.s2 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) = (𝑥( ·𝑠
‘𝐿)𝑦)) |
8 | 7 | oveqrspc2v 7282 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑣 ∈ 𝑃 ∧ 𝑢 ∈ 𝐵)) → (𝑣( ·𝑠
‘𝐾)𝑢) = (𝑣( ·𝑠
‘𝐿)𝑢)) |
9 | 1, 3, 6, 8 | syl12anc 833 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → (𝑣( ·𝑠
‘𝐾)𝑢) = (𝑣( ·𝑠
‘𝐿)𝑢)) |
10 | | lbspropd.b1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
11 | | lbspropd.b2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
12 | | lbspropd.w |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
13 | | lbspropd.p |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
14 | | lbspropd.s1 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠
‘𝐾)𝑦) ∈ 𝑊) |
15 | | lbspropd.p1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
16 | | lbspropd.f |
. . . . . . . . . . . . . . . . 17
⊢ 𝐹 = (Scalar‘𝐾) |
17 | 16 | fveq2i 6759 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐹) =
(Base‘(Scalar‘𝐾)) |
18 | 15, 17 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐾))) |
19 | | lbspropd.p2 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
20 | | lbspropd.g |
. . . . . . . . . . . . . . . . 17
⊢ 𝐺 = (Scalar‘𝐿) |
21 | 20 | fveq2i 6759 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐺) =
(Base‘(Scalar‘𝐿)) |
22 | 19, 21 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 = (Base‘(Scalar‘𝐿))) |
23 | | lbspropd.v1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
24 | | lbspropd.v2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐿 ∈ 𝑌) |
25 | 10, 11, 12, 13, 14, 7, 18, 22, 23, 24 | lsppropd 20195 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (LSpan‘𝐾) = (LSpan‘𝐿)) |
26 | 1, 25 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → (LSpan‘𝐾) = (LSpan‘𝐿)) |
27 | 26 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) = ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))) |
28 | 9, 27 | eleq12d 2833 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → ((𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) ↔ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) |
29 | 28 | notbid 317 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) ∧ 𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)})) → (¬ (𝑣(
·𝑠 ‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) ↔ ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) |
30 | 29 | ralbidva 3119 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (∀𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) ↔ ∀𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) |
31 | 15 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → 𝑃 = (Base‘𝐹)) |
32 | 31 | difeq1d 4052 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (𝑃 ∖ {(0g‘𝐹)}) = ((Base‘𝐹) ∖
{(0g‘𝐹)})) |
33 | 32 | raleqdv 3339 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (∀𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) ↔ ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})))) |
34 | 19 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → 𝑃 = (Base‘𝐺)) |
35 | | lbspropd.a |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
36 | 15, 19, 35 | grpidpropd 18261 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0g‘𝐹) = (0g‘𝐺)) |
37 | 36 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (0g‘𝐹) = (0g‘𝐺)) |
38 | 37 | sneqd 4570 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → {(0g‘𝐹)} = {(0g‘𝐺)}) |
39 | 34, 38 | difeq12d 4054 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (𝑃 ∖ {(0g‘𝐹)}) = ((Base‘𝐺) ∖
{(0g‘𝐺)})) |
40 | 39 | raleqdv 3339 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (∀𝑣 ∈ (𝑃 ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})) ↔ ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) |
41 | 30, 33, 40 | 3bitr3d 308 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ⊆ 𝐵) ∧ 𝑢 ∈ 𝑧) → (∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) ↔ ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) |
42 | 41 | ralbidva 3119 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → (∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})) ↔ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) |
43 | 42 | anbi2d 628 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ⊆ 𝐵) → ((((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢}))) ↔ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))))) |
44 | 43 | pm5.32da 578 |
. . . . 5
⊢ (𝜑 → ((𝑧 ⊆ 𝐵 ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})))) ↔ (𝑧 ⊆ 𝐵 ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))))) |
45 | 10 | sseq2d 3949 |
. . . . . 6
⊢ (𝜑 → (𝑧 ⊆ 𝐵 ↔ 𝑧 ⊆ (Base‘𝐾))) |
46 | 45 | anbi1d 629 |
. . . . 5
⊢ (𝜑 → ((𝑧 ⊆ 𝐵 ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})))) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})))))) |
47 | 11 | sseq2d 3949 |
. . . . . 6
⊢ (𝜑 → (𝑧 ⊆ 𝐵 ↔ 𝑧 ⊆ (Base‘𝐿))) |
48 | 25 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝜑 → ((LSpan‘𝐾)‘𝑧) = ((LSpan‘𝐿)‘𝑧)) |
49 | 10, 11 | eqtr3d 2780 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
50 | 48, 49 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝜑 → (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ↔ ((LSpan‘𝐿)‘𝑧) = (Base‘𝐿))) |
51 | 50 | anbi1d 629 |
. . . . . 6
⊢ (𝜑 → ((((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))) ↔ (((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))))) |
52 | 47, 51 | anbi12d 630 |
. . . . 5
⊢ (𝜑 → ((𝑧 ⊆ 𝐵 ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ (((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))))) |
53 | 44, 46, 52 | 3bitr3d 308 |
. . . 4
⊢ (𝜑 → ((𝑧 ⊆ (Base‘𝐾) ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢})))) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ (((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢})))))) |
54 | | 3anass 1093 |
. . . 4
⊢ ((𝑧 ⊆ (Base‘𝐾) ∧ ((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢}))) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ (((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢}))))) |
55 | | 3anass 1093 |
. . . 4
⊢ ((𝑧 ⊆ (Base‘𝐿) ∧ ((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ (((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))))) |
56 | 53, 54, 55 | 3bitr4g 313 |
. . 3
⊢ (𝜑 → ((𝑧 ⊆ (Base‘𝐾) ∧ ((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢}))) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))))) |
57 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
58 | | eqid 2738 |
. . . . 5
⊢ (
·𝑠 ‘𝐾) = ( ·𝑠
‘𝐾) |
59 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐹) =
(Base‘𝐹) |
60 | | eqid 2738 |
. . . . 5
⊢
(LBasis‘𝐾) =
(LBasis‘𝐾) |
61 | | eqid 2738 |
. . . . 5
⊢
(LSpan‘𝐾) =
(LSpan‘𝐾) |
62 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝐹) = (0g‘𝐹) |
63 | 57, 16, 58, 59, 60, 61, 62 | islbs 20253 |
. . . 4
⊢ (𝐾 ∈ 𝑋 → (𝑧 ∈ (LBasis‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢}))))) |
64 | 23, 63 | syl 17 |
. . 3
⊢ (𝜑 → (𝑧 ∈ (LBasis‘𝐾) ↔ (𝑧 ⊆ (Base‘𝐾) ∧ ((LSpan‘𝐾)‘𝑧) = (Base‘𝐾) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐹) ∖ {(0g‘𝐹)}) ¬ (𝑣( ·𝑠
‘𝐾)𝑢) ∈ ((LSpan‘𝐾)‘(𝑧 ∖ {𝑢}))))) |
65 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐿) =
(Base‘𝐿) |
66 | | eqid 2738 |
. . . . 5
⊢ (
·𝑠 ‘𝐿) = ( ·𝑠
‘𝐿) |
67 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐺) =
(Base‘𝐺) |
68 | | eqid 2738 |
. . . . 5
⊢
(LBasis‘𝐿) =
(LBasis‘𝐿) |
69 | | eqid 2738 |
. . . . 5
⊢
(LSpan‘𝐿) =
(LSpan‘𝐿) |
70 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) |
71 | 65, 20, 66, 67, 68, 69, 70 | islbs 20253 |
. . . 4
⊢ (𝐿 ∈ 𝑌 → (𝑧 ∈ (LBasis‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))))) |
72 | 24, 71 | syl 17 |
. . 3
⊢ (𝜑 → (𝑧 ∈ (LBasis‘𝐿) ↔ (𝑧 ⊆ (Base‘𝐿) ∧ ((LSpan‘𝐿)‘𝑧) = (Base‘𝐿) ∧ ∀𝑢 ∈ 𝑧 ∀𝑣 ∈ ((Base‘𝐺) ∖ {(0g‘𝐺)}) ¬ (𝑣( ·𝑠
‘𝐿)𝑢) ∈ ((LSpan‘𝐿)‘(𝑧 ∖ {𝑢}))))) |
73 | 56, 64, 72 | 3bitr4d 310 |
. 2
⊢ (𝜑 → (𝑧 ∈ (LBasis‘𝐾) ↔ 𝑧 ∈ (LBasis‘𝐿))) |
74 | 73 | eqrdv 2736 |
1
⊢ (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿)) |