MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringpropd Structured version   Visualization version   GIF version

Theorem ringpropd 18804
Description: If two structures have the same group components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringpropd.1 (𝜑𝐵 = (Base‘𝐾))
ringpropd.2 (𝜑𝐵 = (Base‘𝐿))
ringpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
ringpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
ringpropd (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem ringpropd
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 774 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝜑)
2 simprll 788 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑢𝐵)
3 simplrl 786 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝐾 ∈ Grp)
4 simprlr 789 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑣𝐵)
5 ringpropd.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = (Base‘𝐾))
65ad2antrr 708 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝐵 = (Base‘𝐾))
74, 6eleqtrd 2898 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑣 ∈ (Base‘𝐾))
8 simprr 780 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑤𝐵)
98, 6eleqtrd 2898 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑤 ∈ (Base‘𝐾))
10 eqid 2817 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
11 eqid 2817 . . . . . . . . . . . . . . . 16 (+g𝐾) = (+g𝐾)
1210, 11grpcl 17655 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
133, 7, 9, 12syl3anc 1483 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
1413, 6eleqtrrd 2899 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) ∈ 𝐵)
15 ringpropd.4 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
1615oveqrspc2v 6911 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝐵 ∧ (𝑣(+g𝐾)𝑤) ∈ 𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)))
171, 2, 14, 16syl12anc 856 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)))
18 ringpropd.3 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1918oveqrspc2v 6911 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
201, 4, 8, 19syl12anc 856 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
2120oveq2d 6900 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)))
2217, 21eqtrd 2851 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)))
23 simplrr 787 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (mulGrp‘𝐾) ∈ Mnd)
242, 6eleqtrd 2898 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑢 ∈ (Base‘𝐾))
25 eqid 2817 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝐾) = (mulGrp‘𝐾)
2625, 10mgpbas 18717 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
27 eqid 2817 . . . . . . . . . . . . . . . . 17 (.r𝐾) = (.r𝐾)
2825, 27mgpplusg 18715 . . . . . . . . . . . . . . . 16 (.r𝐾) = (+g‘(mulGrp‘𝐾))
2926, 28mndcl 17526 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(.r𝐾)𝑣) ∈ (Base‘𝐾))
3023, 24, 7, 29syl3anc 1483 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) ∈ (Base‘𝐾))
3130, 6eleqtrrd 2899 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) ∈ 𝐵)
3226, 28mndcl 17526 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑢(.r𝐾)𝑤) ∈ (Base‘𝐾))
3323, 24, 9, 32syl3anc 1483 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) ∈ (Base‘𝐾))
3433, 6eleqtrrd 2899 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) ∈ 𝐵)
3518oveqrspc2v 6911 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(.r𝐾)𝑣) ∈ 𝐵 ∧ (𝑢(.r𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)))
361, 31, 34, 35syl12anc 856 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)))
3715oveqrspc2v 6911 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(.r𝐾)𝑣) = (𝑢(.r𝐿)𝑣))
381, 2, 4, 37syl12anc 856 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) = (𝑢(.r𝐿)𝑣))
3915oveqrspc2v 6911 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑤𝐵)) → (𝑢(.r𝐾)𝑤) = (𝑢(.r𝐿)𝑤))
401, 2, 8, 39syl12anc 856 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) = (𝑢(.r𝐿)𝑤))
4138, 40oveq12d 6902 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)))
4236, 41eqtrd 2851 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)))
4322, 42eqeq12d 2832 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ↔ (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤))))
4410, 11grpcl 17655 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
453, 24, 7, 44syl3anc 1483 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
4645, 6eleqtrrd 2899 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) ∈ 𝐵)
4715oveqrspc2v 6911 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(+g𝐾)𝑣) ∈ 𝐵𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤))
481, 46, 8, 47syl12anc 856 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤))
4918oveqrspc2v 6911 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
501, 2, 4, 49syl12anc 856 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
5150oveq1d 6899 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤) = ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤))
5248, 51eqtrd 2851 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤))
5326, 28mndcl 17526 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(.r𝐾)𝑤) ∈ (Base‘𝐾))
5423, 7, 9, 53syl3anc 1483 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) ∈ (Base‘𝐾))
5554, 6eleqtrrd 2899 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) ∈ 𝐵)
5618oveqrspc2v 6911 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(.r𝐾)𝑤) ∈ 𝐵 ∧ (𝑣(.r𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)))
571, 34, 55, 56syl12anc 856 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)))
5815oveqrspc2v 6911 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(.r𝐾)𝑤) = (𝑣(.r𝐿)𝑤))
591, 4, 8, 58syl12anc 856 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) = (𝑣(.r𝐿)𝑤))
6040, 59oveq12d 6902 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))
6157, 60eqtrd 2851 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))
6252, 61eqeq12d 2832 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) ↔ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))
6343, 62anbi12d 618 . . . . . . . . 9 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
6463anassrs 455 . . . . . . . 8 ((((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
6564ralbidva 3184 . . . . . . 7 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ (𝑢𝐵𝑣𝐵)) → (∀𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
66652ralbidva 3187 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
675adantr 468 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐵 = (Base‘𝐾))
6867raleqdv 3344 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
6967, 68raleqbidv 3352 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
7067, 69raleqbidv 3352 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
71 ringpropd.2 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐿))
7271adantr 468 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐵 = (Base‘𝐿))
7372raleqdv 3344 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7472, 73raleqbidv 3352 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7572, 74raleqbidv 3352 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7666, 70, 753bitr3d 300 . . . . 5 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7776pm5.32da 570 . . . 4 (𝜑 → (((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
78 df-3an 1102 . . . 4 ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
79 df-3an 1102 . . . 4 ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
8077, 78, 793bitr4g 305 . . 3 (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
815, 71, 18grppropd 17662 . . . 4 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
825, 26syl6eq 2867 . . . . 5 (𝜑𝐵 = (Base‘(mulGrp‘𝐾)))
83 eqid 2817 . . . . . . 7 (mulGrp‘𝐿) = (mulGrp‘𝐿)
84 eqid 2817 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
8583, 84mgpbas 18717 . . . . . 6 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
8671, 85syl6eq 2867 . . . . 5 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
8728oveqi 6897 . . . . . 6 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)
88 eqid 2817 . . . . . . . 8 (.r𝐿) = (.r𝐿)
8983, 88mgpplusg 18715 . . . . . . 7 (.r𝐿) = (+g‘(mulGrp‘𝐿))
9089oveqi 6897 . . . . . 6 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)
9115, 87, 903eqtr3g 2874 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
9282, 86, 91mndpropd 17541 . . . 4 (𝜑 → ((mulGrp‘𝐾) ∈ Mnd ↔ (mulGrp‘𝐿) ∈ Mnd))
9381, 923anbi12d 1554 . . 3 (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) ↔ (𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
9480, 93bitrd 270 . 2 (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ (𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
9510, 25, 11, 27isring 18773 . 2 (𝐾 ∈ Ring ↔ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
96 eqid 2817 . . 3 (+g𝐿) = (+g𝐿)
9784, 83, 96, 88isring 18773 . 2 (𝐿 ∈ Ring ↔ (𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
9894, 95, 973bitr4g 305 1 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2157  wral 3107  cfv 6111  (class class class)co 6884  Basecbs 16088  +gcplusg 16173  .rcmulr 16174  Mndcmnd 17519  Grpcgrp 17647  mulGrpcmgp 18711  Ringcrg 18769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-cnex 10287  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-om 7306  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-er 7989  df-en 8203  df-dom 8204  df-sdom 8205  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-nn 11316  df-2 11376  df-ndx 16091  df-slot 16092  df-base 16094  df-sets 16095  df-plusg 16186  df-0g 16327  df-mgm 17467  df-sgrp 17509  df-mnd 17520  df-grp 17650  df-mgp 18712  df-ring 18771
This theorem is referenced by:  crngpropd  18805  ringprop  18806  opprringb  18854  drngpropd  18998  subrgpropd  19038  rhmpropd  19039  abvpropd  19066  lmodprop2d  19149  sraassa  19554  assapropd  19556  subrgpsr  19648  opsrring  19843
  Copyright terms: Public domain W3C validator