MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringpropd Structured version   Visualization version   GIF version

Theorem ringpropd 20187
Description: If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringpropd.1 (𝜑𝐵 = (Base‘𝐾))
ringpropd.2 (𝜑𝐵 = (Base‘𝐿))
ringpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
ringpropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
Assertion
Ref Expression
ringpropd (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem ringpropd
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 764 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝜑)
2 simprll 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑢𝐵)
3 simplrl 774 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝐾 ∈ Grp)
4 simprlr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑣𝐵)
5 ringpropd.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = (Base‘𝐾))
65ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝐵 = (Base‘𝐾))
74, 6eleqtrd 2829 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑣 ∈ (Base‘𝐾))
8 simprr 770 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑤𝐵)
98, 6eleqtrd 2829 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑤 ∈ (Base‘𝐾))
10 eqid 2726 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
11 eqid 2726 . . . . . . . . . . . . . . . 16 (+g𝐾) = (+g𝐾)
1210, 11grpcl 18871 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
133, 7, 9, 12syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) ∈ (Base‘𝐾))
1413, 6eleqtrrd 2830 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) ∈ 𝐵)
15 ringpropd.4 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
1615oveqrspc2v 7432 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢𝐵 ∧ (𝑣(+g𝐾)𝑤) ∈ 𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)))
171, 2, 14, 16syl12anc 834 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)))
18 ringpropd.3 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1918oveqrspc2v 7432 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
201, 4, 8, 19syl12anc 834 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
2120oveq2d 7421 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐿)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)))
2217, 21eqtrd 2766 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)))
23 simplrr 775 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (mulGrp‘𝐾) ∈ Mnd)
242, 6eleqtrd 2829 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → 𝑢 ∈ (Base‘𝐾))
25 eqid 2726 . . . . . . . . . . . . . . . . 17 (mulGrp‘𝐾) = (mulGrp‘𝐾)
2625, 10mgpbas 20045 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘(mulGrp‘𝐾))
27 eqid 2726 . . . . . . . . . . . . . . . . 17 (.r𝐾) = (.r𝐾)
2825, 27mgpplusg 20043 . . . . . . . . . . . . . . . 16 (.r𝐾) = (+g‘(mulGrp‘𝐾))
2926, 28mndcl 18675 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(.r𝐾)𝑣) ∈ (Base‘𝐾))
3023, 24, 7, 29syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) ∈ (Base‘𝐾))
3130, 6eleqtrrd 2830 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) ∈ 𝐵)
3226, 28mndcl 18675 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑢(.r𝐾)𝑤) ∈ (Base‘𝐾))
3323, 24, 9, 32syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) ∈ (Base‘𝐾))
3433, 6eleqtrrd 2830 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) ∈ 𝐵)
3518oveqrspc2v 7432 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(.r𝐾)𝑣) ∈ 𝐵 ∧ (𝑢(.r𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)))
361, 31, 34, 35syl12anc 834 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)))
3715oveqrspc2v 7432 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(.r𝐾)𝑣) = (𝑢(.r𝐿)𝑣))
381, 2, 4, 37syl12anc 834 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑣) = (𝑢(.r𝐿)𝑣))
3915oveqrspc2v 7432 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑤𝐵)) → (𝑢(.r𝐾)𝑤) = (𝑢(.r𝐿)𝑤))
401, 2, 8, 39syl12anc 834 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(.r𝐾)𝑤) = (𝑢(.r𝐿)𝑤))
4138, 40oveq12d 7423 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐿)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)))
4236, 41eqtrd 2766 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)))
4322, 42eqeq12d 2742 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ↔ (𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤))))
4410, 11grpcl 18871 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
453, 24, 7, 44syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾))
4645, 6eleqtrrd 2830 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) ∈ 𝐵)
4715oveqrspc2v 7432 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(+g𝐾)𝑣) ∈ 𝐵𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤))
481, 46, 8, 47syl12anc 834 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤))
4918oveqrspc2v 7432 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
501, 2, 4, 49syl12anc 834 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
5150oveq1d 7420 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐿)𝑤) = ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤))
5248, 51eqtrd 2766 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤))
5326, 28mndcl 18675 . . . . . . . . . . . . . . 15 (((mulGrp‘𝐾) ∈ Mnd ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(.r𝐾)𝑤) ∈ (Base‘𝐾))
5423, 7, 9, 53syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) ∈ (Base‘𝐾))
5554, 6eleqtrrd 2830 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) ∈ 𝐵)
5618oveqrspc2v 7432 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑢(.r𝐾)𝑤) ∈ 𝐵 ∧ (𝑣(.r𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)))
571, 34, 55, 56syl12anc 834 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)))
5815oveqrspc2v 7432 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(.r𝐾)𝑤) = (𝑣(.r𝐿)𝑤))
591, 4, 8, 58syl12anc 834 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (𝑣(.r𝐾)𝑤) = (𝑣(.r𝐿)𝑤))
6040, 59oveq12d 7423 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐿)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))
6157, 60eqtrd 2766 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))
6252, 61eqeq12d 2742 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)) ↔ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))
6343, 62anbi12d 630 . . . . . . . . 9 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢𝐵𝑣𝐵) ∧ 𝑤𝐵)) → (((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
6463anassrs 467 . . . . . . . 8 ((((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
6564ralbidva 3169 . . . . . . 7 (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ (𝑢𝐵𝑣𝐵)) → (∀𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
66652ralbidva 3210 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
675adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐵 = (Base‘𝐾))
6867raleqdv 3319 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
6967, 68raleqbidv 3336 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
7067, 69raleqbidv 3336 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
71 ringpropd.2 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐿))
7271adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐵 = (Base‘𝐿))
7372raleqdv 3319 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7472, 73raleqbidv 3336 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7572, 74raleqbidv 3336 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 ((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7666, 70, 753bitr3d 309 . . . . 5 ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
7776pm5.32da 578 . . . 4 (𝜑 → (((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
78 df-3an 1086 . . . 4 ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
79 df-3an 1086 . . . 4 ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
8077, 78, 793bitr4g 314 . . 3 (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
815, 71, 18grppropd 18881 . . . 4 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
825, 26eqtrdi 2782 . . . . 5 (𝜑𝐵 = (Base‘(mulGrp‘𝐾)))
83 eqid 2726 . . . . . . 7 (mulGrp‘𝐿) = (mulGrp‘𝐿)
84 eqid 2726 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
8583, 84mgpbas 20045 . . . . . 6 (Base‘𝐿) = (Base‘(mulGrp‘𝐿))
8671, 85eqtrdi 2782 . . . . 5 (𝜑𝐵 = (Base‘(mulGrp‘𝐿)))
8728oveqi 7418 . . . . . 6 (𝑥(.r𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦)
88 eqid 2726 . . . . . . . 8 (.r𝐿) = (.r𝐿)
8983, 88mgpplusg 20043 . . . . . . 7 (.r𝐿) = (+g‘(mulGrp‘𝐿))
9089oveqi 7418 . . . . . 6 (𝑥(.r𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)
9115, 87, 903eqtr3g 2789 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦))
9282, 86, 91mndpropd 18692 . . . 4 (𝜑 → ((mulGrp‘𝐾) ∈ Mnd ↔ (mulGrp‘𝐿) ∈ Mnd))
9381, 923anbi12d 1433 . . 3 (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))) ↔ (𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
9480, 93bitrd 279 . 2 (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))) ↔ (𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤))))))
9510, 25, 11, 27isring 20142 . 2 (𝐾 ∈ Ring ↔ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r𝐾)(𝑣(+g𝐾)𝑤)) = ((𝑢(.r𝐾)𝑣)(+g𝐾)(𝑢(.r𝐾)𝑤)) ∧ ((𝑢(+g𝐾)𝑣)(.r𝐾)𝑤) = ((𝑢(.r𝐾)𝑤)(+g𝐾)(𝑣(.r𝐾)𝑤)))))
96 eqid 2726 . . 3 (+g𝐿) = (+g𝐿)
9784, 83, 96, 88isring 20142 . 2 (𝐿 ∈ Ring ↔ (𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r𝐿)(𝑣(+g𝐿)𝑤)) = ((𝑢(.r𝐿)𝑣)(+g𝐿)(𝑢(.r𝐿)𝑤)) ∧ ((𝑢(+g𝐿)𝑣)(.r𝐿)𝑤) = ((𝑢(.r𝐿)𝑤)(+g𝐿)(𝑣(.r𝐿)𝑤)))))
9894, 95, 973bitr4g 314 1 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3055  cfv 6537  (class class class)co 7405  Basecbs 17153  +gcplusg 17206  .rcmulr 17207  Mndcmnd 18667  Grpcgrp 18863  mulGrpcmgp 20039  Ringcrg 20138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-plusg 17219  df-0g 17396  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18866  df-mgp 20040  df-ring 20140
This theorem is referenced by:  crngpropd  20188  ringprop  20189  opprringb  20250  subrgpropd  20510  rhmpropd  20511  drngpropd  20624  abvpropd  20685  lmodprop2d  20770  sraring  21042  sraassaOLD  21764  assapropd  21766  subrgpsr  21881  opsrring  22118
  Copyright terms: Public domain W3C validator