Step | Hyp | Ref
| Expression |
1 | | simpll 763 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝜑) |
2 | | simprll 775 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ 𝐵) |
3 | | simplrl 773 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐾 ∈ Grp) |
4 | | simprlr 776 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ 𝐵) |
5 | | ringpropd.1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
6 | 5 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝐵 = (Base‘𝐾)) |
7 | 4, 6 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑣 ∈ (Base‘𝐾)) |
8 | | simprr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
9 | 8, 6 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ (Base‘𝐾)) |
10 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐾) =
(Base‘𝐾) |
11 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(+g‘𝐾) = (+g‘𝐾) |
12 | 10, 11 | grpcl 18500 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Grp ∧ 𝑣 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(+g‘𝐾)𝑤) ∈ (Base‘𝐾)) |
13 | 3, 7, 9, 12 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) ∈ (Base‘𝐾)) |
14 | 13, 6 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) ∈ 𝐵) |
15 | | ringpropd.4 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
16 | 15 | oveqrspc2v 7282 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ (𝑣(+g‘𝐾)𝑤) ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤))) |
17 | 1, 2, 14, 16 | syl12anc 833 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤))) |
18 | | ringpropd.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
19 | 18 | oveqrspc2v 7282 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) |
20 | 1, 4, 8, 19 | syl12anc 833 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(+g‘𝐾)𝑤) = (𝑣(+g‘𝐿)𝑤)) |
21 | 20 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐿)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤))) |
22 | 17, 21 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤))) |
23 | | simplrr 774 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (mulGrp‘𝐾) ∈ Mnd) |
24 | 2, 6 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → 𝑢 ∈ (Base‘𝐾)) |
25 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(mulGrp‘𝐾) =
(mulGrp‘𝐾) |
26 | 25, 10 | mgpbas 19641 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐾) =
(Base‘(mulGrp‘𝐾)) |
27 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(.r‘𝐾) = (.r‘𝐾) |
28 | 25, 27 | mgpplusg 19639 |
. . . . . . . . . . . . . . . 16
⊢
(.r‘𝐾) = (+g‘(mulGrp‘𝐾)) |
29 | 26, 28 | mndcl 18308 |
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ 𝑢 ∈
(Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(.r‘𝐾)𝑣) ∈ (Base‘𝐾)) |
30 | 23, 24, 7, 29 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) ∈ (Base‘𝐾)) |
31 | 30, 6 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) ∈ 𝐵) |
32 | 26, 28 | mndcl 18308 |
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ 𝑢 ∈
(Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑢(.r‘𝐾)𝑤) ∈ (Base‘𝐾)) |
33 | 23, 24, 9, 32 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) ∈ (Base‘𝐾)) |
34 | 33, 6 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) ∈ 𝐵) |
35 | 18 | oveqrspc2v 7282 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(.r‘𝐾)𝑣) ∈ 𝐵 ∧ (𝑢(.r‘𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤))) |
36 | 1, 31, 34, 35 | syl12anc 833 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤))) |
37 | 15 | oveqrspc2v 7282 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(.r‘𝐿)𝑣)) |
38 | 1, 2, 4, 37 | syl12anc 833 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑣) = (𝑢(.r‘𝐿)𝑣)) |
39 | 15 | oveqrspc2v 7282 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(.r‘𝐿)𝑤)) |
40 | 1, 2, 8, 39 | syl12anc 833 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(.r‘𝐾)𝑤) = (𝑢(.r‘𝐿)𝑤)) |
41 | 38, 40 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐿)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤))) |
42 | 36, 41 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤))) |
43 | 22, 42 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ↔ (𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)))) |
44 | 10, 11 | grpcl 18500 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Grp ∧ 𝑢 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾)) → (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾)) |
45 | 3, 24, 7, 44 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) ∈ (Base‘𝐾)) |
46 | 45, 6 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) ∈ 𝐵) |
47 | 15 | oveqrspc2v 7282 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(+g‘𝐾)𝑣) ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤)) |
48 | 1, 46, 8, 47 | syl12anc 833 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤)) |
49 | 18 | oveqrspc2v 7282 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
50 | 1, 2, 4, 49 | syl12anc 833 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑢(+g‘𝐾)𝑣) = (𝑢(+g‘𝐿)𝑣)) |
51 | 50 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐿)𝑤) = ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤)) |
52 | 48, 51 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤)) |
53 | 26, 28 | mndcl 18308 |
. . . . . . . . . . . . . . 15
⊢
(((mulGrp‘𝐾)
∈ Mnd ∧ 𝑣 ∈
(Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑣(.r‘𝐾)𝑤) ∈ (Base‘𝐾)) |
54 | 23, 7, 9, 53 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) ∈ (Base‘𝐾)) |
55 | 54, 6 | eleqtrrd 2842 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) ∈ 𝐵) |
56 | 18 | oveqrspc2v 7282 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑢(.r‘𝐾)𝑤) ∈ 𝐵 ∧ (𝑣(.r‘𝐾)𝑤) ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤))) |
57 | 1, 34, 55, 56 | syl12anc 833 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤))) |
58 | 15 | oveqrspc2v 7282 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(.r‘𝐿)𝑤)) |
59 | 1, 4, 8, 58 | syl12anc 833 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (𝑣(.r‘𝐾)𝑤) = (𝑣(.r‘𝐿)𝑤)) |
60 | 40, 59 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐿)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) |
61 | 57, 60 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) |
62 | 52, 61 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)) ↔ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) |
63 | 43, 62 | anbi12d 630 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ ((𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵) ∧ 𝑤 ∈ 𝐵)) → (((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
64 | 63 | anassrs 467 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) ∧ 𝑤 ∈ 𝐵) → (((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
65 | 64 | ralbidva 3119 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵)) → (∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
66 | 65 | 2ralbidva 3121 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
67 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐵 = (Base‘𝐾)) |
68 | 67 | raleqdv 3339 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
69 | 67, 68 | raleqbidv 3327 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
70 | 67, 69 | raleqbidv 3327 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
71 | | ringpropd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
72 | 71 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) → 𝐵 = (Base‘𝐿)) |
73 | 72 | raleqdv 3339 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
74 | 72, 73 | raleqbidv 3327 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
75 | 72, 74 | raleqbidv 3327 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
76 | 66, 70, 75 | 3bitr3d 308 |
. . . . 5
⊢ ((𝜑 ∧ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd)) →
(∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
77 | 76 | pm5.32da 578 |
. . . 4
⊢ (𝜑 → (((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
78 | | df-3an 1087 |
. . . 4
⊢ ((𝐾 ∈ Grp ∧
(mulGrp‘𝐾) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
79 | | df-3an 1087 |
. . . 4
⊢ ((𝐾 ∈ Grp ∧
(mulGrp‘𝐾) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd) ∧
∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
80 | 77, 78, 79 | 3bitr4g 313 |
. . 3
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ (𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
81 | 5, 71, 18 | grppropd 18509 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
82 | 5, 26 | eqtrdi 2795 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐾))) |
83 | | eqid 2738 |
. . . . . . 7
⊢
(mulGrp‘𝐿) =
(mulGrp‘𝐿) |
84 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐿) =
(Base‘𝐿) |
85 | 83, 84 | mgpbas 19641 |
. . . . . 6
⊢
(Base‘𝐿) =
(Base‘(mulGrp‘𝐿)) |
86 | 71, 85 | eqtrdi 2795 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝐿))) |
87 | 28 | oveqi 7268 |
. . . . . 6
⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(+g‘(mulGrp‘𝐾))𝑦) |
88 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘𝐿) = (.r‘𝐿) |
89 | 83, 88 | mgpplusg 19639 |
. . . . . . 7
⊢
(.r‘𝐿) = (+g‘(mulGrp‘𝐿)) |
90 | 89 | oveqi 7268 |
. . . . . 6
⊢ (𝑥(.r‘𝐿)𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦) |
91 | 15, 87, 90 | 3eqtr3g 2802 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘(mulGrp‘𝐾))𝑦) = (𝑥(+g‘(mulGrp‘𝐿))𝑦)) |
92 | 82, 86, 91 | mndpropd 18325 |
. . . 4
⊢ (𝜑 → ((mulGrp‘𝐾) ∈ Mnd ↔
(mulGrp‘𝐿) ∈
Mnd)) |
93 | 81, 92 | 3anbi12d 1435 |
. . 3
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))) ↔ (𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
94 | 80, 93 | bitrd 278 |
. 2
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (mulGrp‘𝐾) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤)))) ↔ (𝐿 ∈ Grp ∧ (mulGrp‘𝐿) ∈ Mnd ∧ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤)))))) |
95 | 10, 25, 11, 27 | isring 19702 |
. 2
⊢ (𝐾 ∈ Ring ↔ (𝐾 ∈ Grp ∧
(mulGrp‘𝐾) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)((𝑢(.r‘𝐾)(𝑣(+g‘𝐾)𝑤)) = ((𝑢(.r‘𝐾)𝑣)(+g‘𝐾)(𝑢(.r‘𝐾)𝑤)) ∧ ((𝑢(+g‘𝐾)𝑣)(.r‘𝐾)𝑤) = ((𝑢(.r‘𝐾)𝑤)(+g‘𝐾)(𝑣(.r‘𝐾)𝑤))))) |
96 | | eqid 2738 |
. . 3
⊢
(+g‘𝐿) = (+g‘𝐿) |
97 | 84, 83, 96, 88 | isring 19702 |
. 2
⊢ (𝐿 ∈ Ring ↔ (𝐿 ∈ Grp ∧
(mulGrp‘𝐿) ∈ Mnd
∧ ∀𝑢 ∈
(Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)((𝑢(.r‘𝐿)(𝑣(+g‘𝐿)𝑤)) = ((𝑢(.r‘𝐿)𝑣)(+g‘𝐿)(𝑢(.r‘𝐿)𝑤)) ∧ ((𝑢(+g‘𝐿)𝑣)(.r‘𝐿)𝑤) = ((𝑢(.r‘𝐿)𝑤)(+g‘𝐿)(𝑣(.r‘𝐿)𝑤))))) |
98 | 94, 95, 97 | 3bitr4g 313 |
1
⊢ (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |