MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmpropd Structured version   Visualization version   GIF version

Theorem lmhmpropd 20110
Description: Module homomorphism depends only on the module attributes of structures. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
lmhmpropd.a (𝜑𝐵 = (Base‘𝐽))
lmhmpropd.b (𝜑𝐶 = (Base‘𝐾))
lmhmpropd.c (𝜑𝐵 = (Base‘𝐿))
lmhmpropd.d (𝜑𝐶 = (Base‘𝑀))
lmhmpropd.1 (𝜑𝐹 = (Scalar‘𝐽))
lmhmpropd.2 (𝜑𝐺 = (Scalar‘𝐾))
lmhmpropd.3 (𝜑𝐹 = (Scalar‘𝐿))
lmhmpropd.4 (𝜑𝐺 = (Scalar‘𝑀))
lmhmpropd.p 𝑃 = (Base‘𝐹)
lmhmpropd.q 𝑄 = (Base‘𝐺)
lmhmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
lmhmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
lmhmpropd.g ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐽)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
lmhmpropd.h ((𝜑 ∧ (𝑥𝑄𝑦𝐶)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝑀)𝑦))
Assertion
Ref Expression
lmhmpropd (𝜑 → (𝐽 LMHom 𝐾) = (𝐿 LMHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝑄,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem lmhmpropd
Dummy variables 𝑧 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
2 lmhmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 lmhmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
4 lmhmpropd.1 . . . . . 6 (𝜑𝐹 = (Scalar‘𝐽))
5 lmhmpropd.3 . . . . . 6 (𝜑𝐹 = (Scalar‘𝐿))
6 lmhmpropd.p . . . . . 6 𝑃 = (Base‘𝐹)
7 lmhmpropd.g . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐽)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
81, 2, 3, 4, 5, 6, 7lmodpropd 19962 . . . . 5 (𝜑 → (𝐽 ∈ LMod ↔ 𝐿 ∈ LMod))
9 lmhmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
10 lmhmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
11 lmhmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
12 lmhmpropd.2 . . . . . 6 (𝜑𝐺 = (Scalar‘𝐾))
13 lmhmpropd.4 . . . . . 6 (𝜑𝐺 = (Scalar‘𝑀))
14 lmhmpropd.q . . . . . 6 𝑄 = (Base‘𝐺)
15 lmhmpropd.h . . . . . 6 ((𝜑 ∧ (𝑥𝑄𝑦𝐶)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝑀)𝑦))
169, 10, 11, 12, 13, 14, 15lmodpropd 19962 . . . . 5 (𝜑 → (𝐾 ∈ LMod ↔ 𝑀 ∈ LMod))
178, 16anbi12d 634 . . . 4 (𝜑 → ((𝐽 ∈ LMod ∧ 𝐾 ∈ LMod) ↔ (𝐿 ∈ LMod ∧ 𝑀 ∈ LMod)))
187oveqrspc2v 7240 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑃𝑤𝐵)) → (𝑧( ·𝑠𝐽)𝑤) = (𝑧( ·𝑠𝐿)𝑤))
1918adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → (𝑧( ·𝑠𝐽)𝑤) = (𝑧( ·𝑠𝐿)𝑤))
2019fveq2d 6721 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑓‘(𝑧( ·𝑠𝐿)𝑤)))
21 simpll 767 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝜑)
22 simprl 771 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑧𝑃)
23 simplrr 778 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝐺 = 𝐹)
2423fveq2d 6721 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → (Base‘𝐺) = (Base‘𝐹))
2524, 14, 63eqtr4g 2803 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑄 = 𝑃)
2622, 25eleqtrrd 2841 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑧𝑄)
27 simplrl 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑓 ∈ (𝐽 GrpHom 𝐾))
28 eqid 2737 . . . . . . . . . . . . . 14 (Base‘𝐽) = (Base‘𝐽)
29 eqid 2737 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
3028, 29ghmf 18626 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝑓:(Base‘𝐽)⟶(Base‘𝐾))
3127, 30syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑓:(Base‘𝐽)⟶(Base‘𝐾))
32 simprr 773 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑤𝐵)
3321, 1syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝐵 = (Base‘𝐽))
3432, 33eleqtrd 2840 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑤 ∈ (Base‘𝐽))
3531, 34ffvelrnd 6905 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → (𝑓𝑤) ∈ (Base‘𝐾))
3621, 9syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝐶 = (Base‘𝐾))
3735, 36eleqtrrd 2841 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → (𝑓𝑤) ∈ 𝐶)
3815oveqrspc2v 7240 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑄 ∧ (𝑓𝑤) ∈ 𝐶)) → (𝑧( ·𝑠𝐾)(𝑓𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))
3921, 26, 37, 38syl12anc 837 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → (𝑧( ·𝑠𝐾)(𝑓𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))
4020, 39eqeq12d 2753 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → ((𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)) ↔ (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))))
41402ralbidva 3119 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) → (∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)) ↔ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))))
4241pm5.32da 582 . . . . . 6 (𝜑 → (((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹) ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))) ↔ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹) ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))))
43 df-3an 1091 . . . . . 6 ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))) ↔ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹) ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))))
44 df-3an 1091 . . . . . 6 ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))) ↔ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹) ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))))
4542, 43, 443bitr4g 317 . . . . 5 (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))) ↔ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))))
4612, 4eqeq12d 2753 . . . . . 6 (𝜑 → (𝐺 = 𝐹 ↔ (Scalar‘𝐾) = (Scalar‘𝐽)))
474fveq2d 6721 . . . . . . . 8 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐽)))
486, 47syl5eq 2790 . . . . . . 7 (𝜑𝑃 = (Base‘(Scalar‘𝐽)))
491raleqdv 3325 . . . . . . 7 (𝜑 → (∀𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐽)(𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))))
5048, 49raleqbidv 3313 . . . . . 6 (𝜑 → (∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)) ↔ ∀𝑧 ∈ (Base‘(Scalar‘𝐽))∀𝑤 ∈ (Base‘𝐽)(𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))))
5146, 503anbi23d 1441 . . . . 5 (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))) ↔ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ (Scalar‘𝐾) = (Scalar‘𝐽) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐽))∀𝑤 ∈ (Base‘𝐽)(𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)))))
521, 9, 2, 10, 3, 11ghmpropd 18660 . . . . . . 7 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
5352eleq2d 2823 . . . . . 6 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
5413, 5eqeq12d 2753 . . . . . 6 (𝜑 → (𝐺 = 𝐹 ↔ (Scalar‘𝑀) = (Scalar‘𝐿)))
555fveq2d 6721 . . . . . . . 8 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐿)))
566, 55syl5eq 2790 . . . . . . 7 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
572raleqdv 3325 . . . . . . 7 (𝜑 → (∀𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐿)(𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))))
5856, 57raleqbidv 3313 . . . . . 6 (𝜑 → (∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)) ↔ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑤 ∈ (Base‘𝐿)(𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))))
5953, 54, 583anbi123d 1438 . . . . 5 (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ (Scalar‘𝑀) = (Scalar‘𝐿) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑤 ∈ (Base‘𝐿)(𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))))
6045, 51, 593bitr3d 312 . . . 4 (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ (Scalar‘𝐾) = (Scalar‘𝐽) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐽))∀𝑤 ∈ (Base‘𝐽)(𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ (Scalar‘𝑀) = (Scalar‘𝐿) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑤 ∈ (Base‘𝐿)(𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))))
6117, 60anbi12d 634 . . 3 (𝜑 → (((𝐽 ∈ LMod ∧ 𝐾 ∈ LMod) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ (Scalar‘𝐾) = (Scalar‘𝐽) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐽))∀𝑤 ∈ (Base‘𝐽)(𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)))) ↔ ((𝐿 ∈ LMod ∧ 𝑀 ∈ LMod) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ (Scalar‘𝑀) = (Scalar‘𝐿) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑤 ∈ (Base‘𝐿)(𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))))))
62 eqid 2737 . . . 4 (Scalar‘𝐽) = (Scalar‘𝐽)
63 eqid 2737 . . . 4 (Scalar‘𝐾) = (Scalar‘𝐾)
64 eqid 2737 . . . 4 (Base‘(Scalar‘𝐽)) = (Base‘(Scalar‘𝐽))
65 eqid 2737 . . . 4 ( ·𝑠𝐽) = ( ·𝑠𝐽)
66 eqid 2737 . . . 4 ( ·𝑠𝐾) = ( ·𝑠𝐾)
6762, 63, 64, 28, 65, 66islmhm 20064 . . 3 (𝑓 ∈ (𝐽 LMHom 𝐾) ↔ ((𝐽 ∈ LMod ∧ 𝐾 ∈ LMod) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ (Scalar‘𝐾) = (Scalar‘𝐽) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐽))∀𝑤 ∈ (Base‘𝐽)(𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)))))
68 eqid 2737 . . . 4 (Scalar‘𝐿) = (Scalar‘𝐿)
69 eqid 2737 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
70 eqid 2737 . . . 4 (Base‘(Scalar‘𝐿)) = (Base‘(Scalar‘𝐿))
71 eqid 2737 . . . 4 (Base‘𝐿) = (Base‘𝐿)
72 eqid 2737 . . . 4 ( ·𝑠𝐿) = ( ·𝑠𝐿)
73 eqid 2737 . . . 4 ( ·𝑠𝑀) = ( ·𝑠𝑀)
7468, 69, 70, 71, 72, 73islmhm 20064 . . 3 (𝑓 ∈ (𝐿 LMHom 𝑀) ↔ ((𝐿 ∈ LMod ∧ 𝑀 ∈ LMod) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ (Scalar‘𝑀) = (Scalar‘𝐿) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑤 ∈ (Base‘𝐿)(𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))))
7561, 67, 743bitr4g 317 . 2 (𝜑 → (𝑓 ∈ (𝐽 LMHom 𝐾) ↔ 𝑓 ∈ (𝐿 LMHom 𝑀)))
7675eqrdv 2735 1 (𝜑 → (𝐽 LMHom 𝐾) = (𝐿 LMHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wf 6376  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  Scalarcsca 16805   ·𝑠 cvsca 16806   GrpHom cghm 18619  LModclmod 19899   LMHom clmhm 20056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-grp 18368  df-ghm 18620  df-mgp 19505  df-ur 19517  df-ring 19564  df-lmod 19901  df-lmhm 20059
This theorem is referenced by:  phlpropd  20617
  Copyright terms: Public domain W3C validator