MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmpropd Structured version   Visualization version   GIF version

Theorem lmhmpropd 20980
Description: Module homomorphism depends only on the module attributes of structures. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
lmhmpropd.a (𝜑𝐵 = (Base‘𝐽))
lmhmpropd.b (𝜑𝐶 = (Base‘𝐾))
lmhmpropd.c (𝜑𝐵 = (Base‘𝐿))
lmhmpropd.d (𝜑𝐶 = (Base‘𝑀))
lmhmpropd.1 (𝜑𝐹 = (Scalar‘𝐽))
lmhmpropd.2 (𝜑𝐺 = (Scalar‘𝐾))
lmhmpropd.3 (𝜑𝐹 = (Scalar‘𝐿))
lmhmpropd.4 (𝜑𝐺 = (Scalar‘𝑀))
lmhmpropd.p 𝑃 = (Base‘𝐹)
lmhmpropd.q 𝑄 = (Base‘𝐺)
lmhmpropd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
lmhmpropd.f ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
lmhmpropd.g ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐽)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
lmhmpropd.h ((𝜑 ∧ (𝑥𝑄𝑦𝐶)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝑀)𝑦))
Assertion
Ref Expression
lmhmpropd (𝜑 → (𝐽 LMHom 𝐾) = (𝐿 LMHom 𝑀))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝑄,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem lmhmpropd
Dummy variables 𝑧 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmpropd.a . . . . . 6 (𝜑𝐵 = (Base‘𝐽))
2 lmhmpropd.c . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
3 lmhmpropd.e . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))
4 lmhmpropd.1 . . . . . 6 (𝜑𝐹 = (Scalar‘𝐽))
5 lmhmpropd.3 . . . . . 6 (𝜑𝐹 = (Scalar‘𝐿))
6 lmhmpropd.p . . . . . 6 𝑃 = (Base‘𝐹)
7 lmhmpropd.g . . . . . 6 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐽)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
81, 2, 3, 4, 5, 6, 7lmodpropd 20831 . . . . 5 (𝜑 → (𝐽 ∈ LMod ↔ 𝐿 ∈ LMod))
9 lmhmpropd.b . . . . . 6 (𝜑𝐶 = (Base‘𝐾))
10 lmhmpropd.d . . . . . 6 (𝜑𝐶 = (Base‘𝑀))
11 lmhmpropd.f . . . . . 6 ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))
12 lmhmpropd.2 . . . . . 6 (𝜑𝐺 = (Scalar‘𝐾))
13 lmhmpropd.4 . . . . . 6 (𝜑𝐺 = (Scalar‘𝑀))
14 lmhmpropd.q . . . . . 6 𝑄 = (Base‘𝐺)
15 lmhmpropd.h . . . . . 6 ((𝜑 ∧ (𝑥𝑄𝑦𝐶)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝑀)𝑦))
169, 10, 11, 12, 13, 14, 15lmodpropd 20831 . . . . 5 (𝜑 → (𝐾 ∈ LMod ↔ 𝑀 ∈ LMod))
178, 16anbi12d 632 . . . 4 (𝜑 → ((𝐽 ∈ LMod ∧ 𝐾 ∈ LMod) ↔ (𝐿 ∈ LMod ∧ 𝑀 ∈ LMod)))
187oveqrspc2v 7414 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑃𝑤𝐵)) → (𝑧( ·𝑠𝐽)𝑤) = (𝑧( ·𝑠𝐿)𝑤))
1918adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → (𝑧( ·𝑠𝐽)𝑤) = (𝑧( ·𝑠𝐿)𝑤))
2019fveq2d 6862 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑓‘(𝑧( ·𝑠𝐿)𝑤)))
21 simpll 766 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝜑)
22 simprl 770 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑧𝑃)
23 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝐺 = 𝐹)
2423fveq2d 6862 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → (Base‘𝐺) = (Base‘𝐹))
2524, 14, 63eqtr4g 2789 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑄 = 𝑃)
2622, 25eleqtrrd 2831 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑧𝑄)
27 simplrl 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑓 ∈ (𝐽 GrpHom 𝐾))
28 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝐽) = (Base‘𝐽)
29 eqid 2729 . . . . . . . . . . . . . 14 (Base‘𝐾) = (Base‘𝐾)
3028, 29ghmf 19152 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐽 GrpHom 𝐾) → 𝑓:(Base‘𝐽)⟶(Base‘𝐾))
3127, 30syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑓:(Base‘𝐽)⟶(Base‘𝐾))
32 simprr 772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑤𝐵)
3321, 1syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝐵 = (Base‘𝐽))
3432, 33eleqtrd 2830 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝑤 ∈ (Base‘𝐽))
3531, 34ffvelcdmd 7057 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → (𝑓𝑤) ∈ (Base‘𝐾))
3621, 9syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → 𝐶 = (Base‘𝐾))
3735, 36eleqtrrd 2831 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → (𝑓𝑤) ∈ 𝐶)
3815oveqrspc2v 7414 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑄 ∧ (𝑓𝑤) ∈ 𝐶)) → (𝑧( ·𝑠𝐾)(𝑓𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))
3921, 26, 37, 38syl12anc 836 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → (𝑧( ·𝑠𝐾)(𝑓𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))
4020, 39eqeq12d 2745 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧𝑃𝑤𝐵)) → ((𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)) ↔ (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))))
41402ralbidva 3199 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) → (∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)) ↔ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))))
4241pm5.32da 579 . . . . . 6 (𝜑 → (((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹) ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))) ↔ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹) ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))))
43 df-3an 1088 . . . . . 6 ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))) ↔ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹) ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))))
44 df-3an 1088 . . . . . 6 ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))) ↔ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹) ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))))
4542, 43, 443bitr4g 314 . . . . 5 (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))) ↔ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))))
4612, 4eqeq12d 2745 . . . . . 6 (𝜑 → (𝐺 = 𝐹 ↔ (Scalar‘𝐾) = (Scalar‘𝐽)))
474fveq2d 6862 . . . . . . . 8 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐽)))
486, 47eqtrid 2776 . . . . . . 7 (𝜑𝑃 = (Base‘(Scalar‘𝐽)))
491raleqdv 3299 . . . . . . 7 (𝜑 → (∀𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐽)(𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))))
5048, 49raleqbidv 3319 . . . . . 6 (𝜑 → (∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)) ↔ ∀𝑧 ∈ (Base‘(Scalar‘𝐽))∀𝑤 ∈ (Base‘𝐽)(𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))))
5146, 503anbi23d 1441 . . . . 5 (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))) ↔ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ (Scalar‘𝐾) = (Scalar‘𝐽) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐽))∀𝑤 ∈ (Base‘𝐽)(𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)))))
521, 9, 2, 10, 3, 11ghmpropd 19188 . . . . . . 7 (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
5352eleq2d 2814 . . . . . 6 (𝜑 → (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
5413, 5eqeq12d 2745 . . . . . 6 (𝜑 → (𝐺 = 𝐹 ↔ (Scalar‘𝑀) = (Scalar‘𝐿)))
555fveq2d 6862 . . . . . . . 8 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐿)))
566, 55eqtrid 2776 . . . . . . 7 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
572raleqdv 3299 . . . . . . 7 (𝜑 → (∀𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐿)(𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))))
5856, 57raleqbidv 3319 . . . . . 6 (𝜑 → (∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)) ↔ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑤 ∈ (Base‘𝐿)(𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))))
5953, 54, 583anbi123d 1438 . . . . 5 (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ ∀𝑧𝑃𝑤𝐵 (𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ (Scalar‘𝑀) = (Scalar‘𝐿) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑤 ∈ (Base‘𝐿)(𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))))
6045, 51, 593bitr3d 309 . . . 4 (𝜑 → ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ (Scalar‘𝐾) = (Scalar‘𝐽) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐽))∀𝑤 ∈ (Base‘𝐽)(𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ (Scalar‘𝑀) = (Scalar‘𝐿) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑤 ∈ (Base‘𝐿)(𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))))
6117, 60anbi12d 632 . . 3 (𝜑 → (((𝐽 ∈ LMod ∧ 𝐾 ∈ LMod) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ (Scalar‘𝐾) = (Scalar‘𝐽) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐽))∀𝑤 ∈ (Base‘𝐽)(𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)))) ↔ ((𝐿 ∈ LMod ∧ 𝑀 ∈ LMod) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ (Scalar‘𝑀) = (Scalar‘𝐿) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑤 ∈ (Base‘𝐿)(𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤))))))
62 eqid 2729 . . . 4 (Scalar‘𝐽) = (Scalar‘𝐽)
63 eqid 2729 . . . 4 (Scalar‘𝐾) = (Scalar‘𝐾)
64 eqid 2729 . . . 4 (Base‘(Scalar‘𝐽)) = (Base‘(Scalar‘𝐽))
65 eqid 2729 . . . 4 ( ·𝑠𝐽) = ( ·𝑠𝐽)
66 eqid 2729 . . . 4 ( ·𝑠𝐾) = ( ·𝑠𝐾)
6762, 63, 64, 28, 65, 66islmhm 20934 . . 3 (𝑓 ∈ (𝐽 LMHom 𝐾) ↔ ((𝐽 ∈ LMod ∧ 𝐾 ∈ LMod) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ (Scalar‘𝐾) = (Scalar‘𝐽) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐽))∀𝑤 ∈ (Base‘𝐽)(𝑓‘(𝑧( ·𝑠𝐽)𝑤)) = (𝑧( ·𝑠𝐾)(𝑓𝑤)))))
68 eqid 2729 . . . 4 (Scalar‘𝐿) = (Scalar‘𝐿)
69 eqid 2729 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
70 eqid 2729 . . . 4 (Base‘(Scalar‘𝐿)) = (Base‘(Scalar‘𝐿))
71 eqid 2729 . . . 4 (Base‘𝐿) = (Base‘𝐿)
72 eqid 2729 . . . 4 ( ·𝑠𝐿) = ( ·𝑠𝐿)
73 eqid 2729 . . . 4 ( ·𝑠𝑀) = ( ·𝑠𝑀)
7468, 69, 70, 71, 72, 73islmhm 20934 . . 3 (𝑓 ∈ (𝐿 LMHom 𝑀) ↔ ((𝐿 ∈ LMod ∧ 𝑀 ∈ LMod) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ (Scalar‘𝑀) = (Scalar‘𝐿) ∧ ∀𝑧 ∈ (Base‘(Scalar‘𝐿))∀𝑤 ∈ (Base‘𝐿)(𝑓‘(𝑧( ·𝑠𝐿)𝑤)) = (𝑧( ·𝑠𝑀)(𝑓𝑤)))))
7561, 67, 743bitr4g 314 . 2 (𝜑 → (𝑓 ∈ (𝐽 LMHom 𝐾) ↔ 𝑓 ∈ (𝐿 LMHom 𝑀)))
7675eqrdv 2727 1 (𝜑 → (𝐽 LMHom 𝐾) = (𝐿 LMHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223   ·𝑠 cvsca 17224   GrpHom cghm 19144  LModclmod 20766   LMHom clmhm 20926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-ghm 19145  df-mgp 20050  df-ur 20091  df-ring 20144  df-lmod 20768  df-lmhm 20929
This theorem is referenced by:  phlpropd  21564
  Copyright terms: Public domain W3C validator