MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmpropd Structured version   Visualization version   GIF version

Theorem lmhmpropd 20684
Description: Module homomorphism depends only on the module attributes of structures. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
lmhmpropd.a (πœ‘ β†’ 𝐡 = (Baseβ€˜π½))
lmhmpropd.b (πœ‘ β†’ 𝐢 = (Baseβ€˜πΎ))
lmhmpropd.c (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))
lmhmpropd.d (πœ‘ β†’ 𝐢 = (Baseβ€˜π‘€))
lmhmpropd.1 (πœ‘ β†’ 𝐹 = (Scalarβ€˜π½))
lmhmpropd.2 (πœ‘ β†’ 𝐺 = (Scalarβ€˜πΎ))
lmhmpropd.3 (πœ‘ β†’ 𝐹 = (Scalarβ€˜πΏ))
lmhmpropd.4 (πœ‘ β†’ 𝐺 = (Scalarβ€˜π‘€))
lmhmpropd.p 𝑃 = (Baseβ€˜πΉ)
lmhmpropd.q 𝑄 = (Baseβ€˜πΊ)
lmhmpropd.e ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(+gβ€˜π½)𝑦) = (π‘₯(+gβ€˜πΏ)𝑦))
lmhmpropd.f ((πœ‘ ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (π‘₯(+gβ€˜πΎ)𝑦) = (π‘₯(+gβ€˜π‘€)𝑦))
lmhmpropd.g ((πœ‘ ∧ (π‘₯ ∈ 𝑃 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯( ·𝑠 β€˜π½)𝑦) = (π‘₯( ·𝑠 β€˜πΏ)𝑦))
lmhmpropd.h ((πœ‘ ∧ (π‘₯ ∈ 𝑄 ∧ 𝑦 ∈ 𝐢)) β†’ (π‘₯( ·𝑠 β€˜πΎ)𝑦) = (π‘₯( ·𝑠 β€˜π‘€)𝑦))
Assertion
Ref Expression
lmhmpropd (πœ‘ β†’ (𝐽 LMHom 𝐾) = (𝐿 LMHom 𝑀))
Distinct variable groups:   π‘₯,𝑦,𝐢   π‘₯,𝐽,𝑦   π‘₯,𝐾,𝑦   π‘₯,𝐿,𝑦   π‘₯,𝑀,𝑦   π‘₯,𝑃,𝑦   πœ‘,π‘₯,𝑦   π‘₯,𝐡,𝑦   π‘₯,𝑄,𝑦
Allowed substitution hints:   𝐹(π‘₯,𝑦)   𝐺(π‘₯,𝑦)

Proof of Theorem lmhmpropd
Dummy variables 𝑧 𝑀 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmpropd.a . . . . . 6 (πœ‘ β†’ 𝐡 = (Baseβ€˜π½))
2 lmhmpropd.c . . . . . 6 (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))
3 lmhmpropd.e . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(+gβ€˜π½)𝑦) = (π‘₯(+gβ€˜πΏ)𝑦))
4 lmhmpropd.1 . . . . . 6 (πœ‘ β†’ 𝐹 = (Scalarβ€˜π½))
5 lmhmpropd.3 . . . . . 6 (πœ‘ β†’ 𝐹 = (Scalarβ€˜πΏ))
6 lmhmpropd.p . . . . . 6 𝑃 = (Baseβ€˜πΉ)
7 lmhmpropd.g . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑃 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯( ·𝑠 β€˜π½)𝑦) = (π‘₯( ·𝑠 β€˜πΏ)𝑦))
81, 2, 3, 4, 5, 6, 7lmodpropd 20535 . . . . 5 (πœ‘ β†’ (𝐽 ∈ LMod ↔ 𝐿 ∈ LMod))
9 lmhmpropd.b . . . . . 6 (πœ‘ β†’ 𝐢 = (Baseβ€˜πΎ))
10 lmhmpropd.d . . . . . 6 (πœ‘ β†’ 𝐢 = (Baseβ€˜π‘€))
11 lmhmpropd.f . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (π‘₯(+gβ€˜πΎ)𝑦) = (π‘₯(+gβ€˜π‘€)𝑦))
12 lmhmpropd.2 . . . . . 6 (πœ‘ β†’ 𝐺 = (Scalarβ€˜πΎ))
13 lmhmpropd.4 . . . . . 6 (πœ‘ β†’ 𝐺 = (Scalarβ€˜π‘€))
14 lmhmpropd.q . . . . . 6 𝑄 = (Baseβ€˜πΊ)
15 lmhmpropd.h . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ 𝑄 ∧ 𝑦 ∈ 𝐢)) β†’ (π‘₯( ·𝑠 β€˜πΎ)𝑦) = (π‘₯( ·𝑠 β€˜π‘€)𝑦))
169, 10, 11, 12, 13, 14, 15lmodpropd 20535 . . . . 5 (πœ‘ β†’ (𝐾 ∈ LMod ↔ 𝑀 ∈ LMod))
178, 16anbi12d 632 . . . 4 (πœ‘ β†’ ((𝐽 ∈ LMod ∧ 𝐾 ∈ LMod) ↔ (𝐿 ∈ LMod ∧ 𝑀 ∈ LMod)))
187oveqrspc2v 7436 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑧( ·𝑠 β€˜π½)𝑀) = (𝑧( ·𝑠 β€˜πΏ)𝑀))
1918adantlr 714 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑧( ·𝑠 β€˜π½)𝑀) = (𝑧( ·𝑠 β€˜πΏ)𝑀))
2019fveq2d 6896 . . . . . . . . 9 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ (π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)))
21 simpll 766 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ πœ‘)
22 simprl 770 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ 𝑧 ∈ 𝑃)
23 simplrr 777 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ 𝐺 = 𝐹)
2423fveq2d 6896 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ (Baseβ€˜πΊ) = (Baseβ€˜πΉ))
2524, 14, 63eqtr4g 2798 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ 𝑄 = 𝑃)
2622, 25eleqtrrd 2837 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ 𝑧 ∈ 𝑄)
27 simplrl 776 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ 𝑓 ∈ (𝐽 GrpHom 𝐾))
28 eqid 2733 . . . . . . . . . . . . . 14 (Baseβ€˜π½) = (Baseβ€˜π½)
29 eqid 2733 . . . . . . . . . . . . . 14 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
3028, 29ghmf 19096 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐽 GrpHom 𝐾) β†’ 𝑓:(Baseβ€˜π½)⟢(Baseβ€˜πΎ))
3127, 30syl 17 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ 𝑓:(Baseβ€˜π½)⟢(Baseβ€˜πΎ))
32 simprr 772 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ 𝑀 ∈ 𝐡)
3321, 1syl 17 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ 𝐡 = (Baseβ€˜π½))
3432, 33eleqtrd 2836 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ 𝑀 ∈ (Baseβ€˜π½))
3531, 34ffvelcdmd 7088 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ (π‘“β€˜π‘€) ∈ (Baseβ€˜πΎ))
3621, 9syl 17 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ 𝐢 = (Baseβ€˜πΎ))
3735, 36eleqtrrd 2837 . . . . . . . . . 10 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ (π‘“β€˜π‘€) ∈ 𝐢)
3815oveqrspc2v 7436 . . . . . . . . . 10 ((πœ‘ ∧ (𝑧 ∈ 𝑄 ∧ (π‘“β€˜π‘€) ∈ 𝐢)) β†’ (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€)))
3921, 26, 37, 38syl12anc 836 . . . . . . . . 9 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€)))
4020, 39eqeq12d 2749 . . . . . . . 8 (((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) ∧ (𝑧 ∈ 𝑃 ∧ 𝑀 ∈ 𝐡)) β†’ ((π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€)) ↔ (π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€))))
41402ralbidva 3217 . . . . . . 7 ((πœ‘ ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹)) β†’ (βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€)) ↔ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€))))
4241pm5.32da 580 . . . . . 6 (πœ‘ β†’ (((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹) ∧ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€))) ↔ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹) ∧ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€)))))
43 df-3an 1090 . . . . . 6 ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€))) ↔ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹) ∧ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€))))
44 df-3an 1090 . . . . . 6 ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€))) ↔ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹) ∧ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€))))
4542, 43, 443bitr4g 314 . . . . 5 (πœ‘ β†’ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€))) ↔ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€)))))
4612, 4eqeq12d 2749 . . . . . 6 (πœ‘ β†’ (𝐺 = 𝐹 ↔ (Scalarβ€˜πΎ) = (Scalarβ€˜π½)))
474fveq2d 6896 . . . . . . . 8 (πœ‘ β†’ (Baseβ€˜πΉ) = (Baseβ€˜(Scalarβ€˜π½)))
486, 47eqtrid 2785 . . . . . . 7 (πœ‘ β†’ 𝑃 = (Baseβ€˜(Scalarβ€˜π½)))
491raleqdv 3326 . . . . . . 7 (πœ‘ β†’ (βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€)) ↔ βˆ€π‘€ ∈ (Baseβ€˜π½)(π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€))))
5048, 49raleqbidv 3343 . . . . . 6 (πœ‘ β†’ (βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€)) ↔ βˆ€π‘§ ∈ (Baseβ€˜(Scalarβ€˜π½))βˆ€π‘€ ∈ (Baseβ€˜π½)(π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€))))
5146, 503anbi23d 1440 . . . . 5 (πœ‘ β†’ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€))) ↔ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ (Scalarβ€˜πΎ) = (Scalarβ€˜π½) ∧ βˆ€π‘§ ∈ (Baseβ€˜(Scalarβ€˜π½))βˆ€π‘€ ∈ (Baseβ€˜π½)(π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€)))))
521, 9, 2, 10, 3, 11ghmpropd 19130 . . . . . . 7 (πœ‘ β†’ (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀))
5352eleq2d 2820 . . . . . 6 (πœ‘ β†’ (𝑓 ∈ (𝐽 GrpHom 𝐾) ↔ 𝑓 ∈ (𝐿 GrpHom 𝑀)))
5413, 5eqeq12d 2749 . . . . . 6 (πœ‘ β†’ (𝐺 = 𝐹 ↔ (Scalarβ€˜π‘€) = (Scalarβ€˜πΏ)))
555fveq2d 6896 . . . . . . . 8 (πœ‘ β†’ (Baseβ€˜πΉ) = (Baseβ€˜(Scalarβ€˜πΏ)))
566, 55eqtrid 2785 . . . . . . 7 (πœ‘ β†’ 𝑃 = (Baseβ€˜(Scalarβ€˜πΏ)))
572raleqdv 3326 . . . . . . 7 (πœ‘ β†’ (βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€)) ↔ βˆ€π‘€ ∈ (Baseβ€˜πΏ)(π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€))))
5856, 57raleqbidv 3343 . . . . . 6 (πœ‘ β†’ (βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€)) ↔ βˆ€π‘§ ∈ (Baseβ€˜(Scalarβ€˜πΏ))βˆ€π‘€ ∈ (Baseβ€˜πΏ)(π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€))))
5953, 54, 583anbi123d 1437 . . . . 5 (πœ‘ β†’ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ 𝐺 = 𝐹 ∧ βˆ€π‘§ ∈ 𝑃 βˆ€π‘€ ∈ 𝐡 (π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ (Scalarβ€˜π‘€) = (Scalarβ€˜πΏ) ∧ βˆ€π‘§ ∈ (Baseβ€˜(Scalarβ€˜πΏ))βˆ€π‘€ ∈ (Baseβ€˜πΏ)(π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€)))))
6045, 51, 593bitr3d 309 . . . 4 (πœ‘ β†’ ((𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ (Scalarβ€˜πΎ) = (Scalarβ€˜π½) ∧ βˆ€π‘§ ∈ (Baseβ€˜(Scalarβ€˜π½))βˆ€π‘€ ∈ (Baseβ€˜π½)(π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€))) ↔ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ (Scalarβ€˜π‘€) = (Scalarβ€˜πΏ) ∧ βˆ€π‘§ ∈ (Baseβ€˜(Scalarβ€˜πΏ))βˆ€π‘€ ∈ (Baseβ€˜πΏ)(π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€)))))
6117, 60anbi12d 632 . . 3 (πœ‘ β†’ (((𝐽 ∈ LMod ∧ 𝐾 ∈ LMod) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ (Scalarβ€˜πΎ) = (Scalarβ€˜π½) ∧ βˆ€π‘§ ∈ (Baseβ€˜(Scalarβ€˜π½))βˆ€π‘€ ∈ (Baseβ€˜π½)(π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€)))) ↔ ((𝐿 ∈ LMod ∧ 𝑀 ∈ LMod) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ (Scalarβ€˜π‘€) = (Scalarβ€˜πΏ) ∧ βˆ€π‘§ ∈ (Baseβ€˜(Scalarβ€˜πΏ))βˆ€π‘€ ∈ (Baseβ€˜πΏ)(π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€))))))
62 eqid 2733 . . . 4 (Scalarβ€˜π½) = (Scalarβ€˜π½)
63 eqid 2733 . . . 4 (Scalarβ€˜πΎ) = (Scalarβ€˜πΎ)
64 eqid 2733 . . . 4 (Baseβ€˜(Scalarβ€˜π½)) = (Baseβ€˜(Scalarβ€˜π½))
65 eqid 2733 . . . 4 ( ·𝑠 β€˜π½) = ( ·𝑠 β€˜π½)
66 eqid 2733 . . . 4 ( ·𝑠 β€˜πΎ) = ( ·𝑠 β€˜πΎ)
6762, 63, 64, 28, 65, 66islmhm 20638 . . 3 (𝑓 ∈ (𝐽 LMHom 𝐾) ↔ ((𝐽 ∈ LMod ∧ 𝐾 ∈ LMod) ∧ (𝑓 ∈ (𝐽 GrpHom 𝐾) ∧ (Scalarβ€˜πΎ) = (Scalarβ€˜π½) ∧ βˆ€π‘§ ∈ (Baseβ€˜(Scalarβ€˜π½))βˆ€π‘€ ∈ (Baseβ€˜π½)(π‘“β€˜(𝑧( ·𝑠 β€˜π½)𝑀)) = (𝑧( ·𝑠 β€˜πΎ)(π‘“β€˜π‘€)))))
68 eqid 2733 . . . 4 (Scalarβ€˜πΏ) = (Scalarβ€˜πΏ)
69 eqid 2733 . . . 4 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
70 eqid 2733 . . . 4 (Baseβ€˜(Scalarβ€˜πΏ)) = (Baseβ€˜(Scalarβ€˜πΏ))
71 eqid 2733 . . . 4 (Baseβ€˜πΏ) = (Baseβ€˜πΏ)
72 eqid 2733 . . . 4 ( ·𝑠 β€˜πΏ) = ( ·𝑠 β€˜πΏ)
73 eqid 2733 . . . 4 ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘€)
7468, 69, 70, 71, 72, 73islmhm 20638 . . 3 (𝑓 ∈ (𝐿 LMHom 𝑀) ↔ ((𝐿 ∈ LMod ∧ 𝑀 ∈ LMod) ∧ (𝑓 ∈ (𝐿 GrpHom 𝑀) ∧ (Scalarβ€˜π‘€) = (Scalarβ€˜πΏ) ∧ βˆ€π‘§ ∈ (Baseβ€˜(Scalarβ€˜πΏ))βˆ€π‘€ ∈ (Baseβ€˜πΏ)(π‘“β€˜(𝑧( ·𝑠 β€˜πΏ)𝑀)) = (𝑧( ·𝑠 β€˜π‘€)(π‘“β€˜π‘€)))))
7561, 67, 743bitr4g 314 . 2 (πœ‘ β†’ (𝑓 ∈ (𝐽 LMHom 𝐾) ↔ 𝑓 ∈ (𝐿 LMHom 𝑀)))
7675eqrdv 2731 1 (πœ‘ β†’ (𝐽 LMHom 𝐾) = (𝐿 LMHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  +gcplusg 17197  Scalarcsca 17200   ·𝑠 cvsca 17201   GrpHom cghm 19089  LModclmod 20471   LMHom clmhm 20630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-plusg 17210  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671  df-grp 18822  df-ghm 19090  df-mgp 19988  df-ur 20005  df-ring 20058  df-lmod 20473  df-lmhm 20633
This theorem is referenced by:  phlpropd  21208
  Copyright terms: Public domain W3C validator