MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidpropd Structured version   Visualization version   GIF version

Theorem grpidpropd 18675
Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypotheses
Ref Expression
grpidpropd.1 (𝜑𝐵 = (Base‘𝐾))
grpidpropd.2 (𝜑𝐵 = (Base‘𝐿))
grpidpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
grpidpropd (𝜑 → (0g𝐾) = (0g𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem grpidpropd
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpidpropd.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
21eqeq1d 2739 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐾)𝑦) = 𝑦 ↔ (𝑥(+g𝐿)𝑦) = 𝑦))
31oveqrspc2v 7458 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(+g𝐾)𝑤) = (𝑧(+g𝐿)𝑤))
43oveqrspc2v 7458 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑥𝐵)) → (𝑦(+g𝐾)𝑥) = (𝑦(+g𝐿)𝑥))
54ancom2s 650 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(+g𝐾)𝑥) = (𝑦(+g𝐿)𝑥))
65eqeq1d 2739 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑦(+g𝐾)𝑥) = 𝑦 ↔ (𝑦(+g𝐿)𝑥) = 𝑦))
72, 6anbi12d 632 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
87anassrs 467 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
98ralbidva 3176 . . . . 5 ((𝜑𝑥𝐵) → (∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
109pm5.32da 579 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)) ↔ (𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
11 grpidpropd.1 . . . . . 6 (𝜑𝐵 = (Base‘𝐾))
1211eleq2d 2827 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐾)))
1311raleqdv 3326 . . . . 5 (𝜑 → (∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)))
1412, 13anbi12d 632 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦))))
15 grpidpropd.2 . . . . . 6 (𝜑𝐵 = (Base‘𝐿))
1615eleq2d 2827 . . . . 5 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐿)))
1715raleqdv 3326 . . . . 5 (𝜑 → (∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
1816, 17anbi12d 632 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
1910, 14, 183bitr3d 309 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
2019iotabidv 6545 . 2 (𝜑 → (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦))))
21 eqid 2737 . . 3 (Base‘𝐾) = (Base‘𝐾)
22 eqid 2737 . . 3 (+g𝐾) = (+g𝐾)
23 eqid 2737 . . 3 (0g𝐾) = (0g𝐾)
2421, 22, 23grpidval 18674 . 2 (0g𝐾) = (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g𝐾)𝑦) = 𝑦 ∧ (𝑦(+g𝐾)𝑥) = 𝑦)))
25 eqid 2737 . . 3 (Base‘𝐿) = (Base‘𝐿)
26 eqid 2737 . . 3 (+g𝐿) = (+g𝐿)
27 eqid 2737 . . 3 (0g𝐿) = (0g𝐿)
2825, 26, 27grpidval 18674 . 2 (0g𝐿) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g𝐿)𝑦) = 𝑦 ∧ (𝑦(+g𝐿)𝑥) = 𝑦)))
2920, 24, 283eqtr4g 2802 1 (𝜑 → (0g𝐾) = (0g𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  cio 6512  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-0g 17486
This theorem is referenced by:  gsumpropd  18691  gsumpropd2lem  18692  mhmpropd  18805  grppropd  18969  grpinvpropd  19033  mulgpropd  19134  prds1  20320  rngidpropd  20415  nzrpropd  20520  drngprop  20744  drngpropd  20769  abvpropd  20836  lbspropd  21098  sralmod0  21195  phlpropd  21673  opsr0  22220  mplbaspropd  22238  ply1mpl0  22258  mat0  22423  nmpropd  24607  nmpropd2  24608  tng0  24659  mdegpropd  26123  ply1divalg2  26178  domnpropd  33280  resv0g  33367  zlm0  33959  hlhils0  41951  hlhil0  41961  mnring0gd  44238
  Copyright terms: Public domain W3C validator