Step | Hyp | Ref
| Expression |
1 | | grpidpropd.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
2 | 1 | eqeq1d 2761 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑥(+g‘𝐾)𝑦) = 𝑦 ↔ (𝑥(+g‘𝐿)𝑦) = 𝑦)) |
3 | 1 | oveqrspc2v 7178 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧(+g‘𝐾)𝑤) = (𝑧(+g‘𝐿)𝑤)) |
4 | 3 | oveqrspc2v 7178 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑦(+g‘𝐾)𝑥) = (𝑦(+g‘𝐿)𝑥)) |
5 | 4 | ancom2s 650 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦(+g‘𝐾)𝑥) = (𝑦(+g‘𝐿)𝑥)) |
6 | 5 | eqeq1d 2761 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝑦(+g‘𝐾)𝑥) = 𝑦 ↔ (𝑦(+g‘𝐿)𝑥) = 𝑦)) |
7 | 2, 6 | anbi12d 634 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦) ↔ ((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦))) |
8 | 7 | anassrs 472 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦) ↔ ((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦))) |
9 | 8 | ralbidva 3126 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦))) |
10 | 9 | pm5.32da 583 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦)))) |
11 | | grpidpropd.1 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
12 | 11 | eleq2d 2838 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐾))) |
13 | 11 | raleqdv 3330 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦))) |
14 | 12, 13 | anbi12d 634 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦)))) |
15 | | grpidpropd.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
16 | 15 | eleq2d 2838 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝐿))) |
17 | 15 | raleqdv 3330 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦) ↔ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦))) |
18 | 16, 17 | anbi12d 634 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦)))) |
19 | 10, 14, 18 | 3bitr3d 313 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦)) ↔ (𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦)))) |
20 | 19 | iotabidv 6320 |
. 2
⊢ (𝜑 → (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦))) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦)))) |
21 | | eqid 2759 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
22 | | eqid 2759 |
. . 3
⊢
(+g‘𝐾) = (+g‘𝐾) |
23 | | eqid 2759 |
. . 3
⊢
(0g‘𝐾) = (0g‘𝐾) |
24 | 21, 22, 23 | grpidval 17930 |
. 2
⊢
(0g‘𝐾) = (℩𝑥(𝑥 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ (Base‘𝐾)((𝑥(+g‘𝐾)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐾)𝑥) = 𝑦))) |
25 | | eqid 2759 |
. . 3
⊢
(Base‘𝐿) =
(Base‘𝐿) |
26 | | eqid 2759 |
. . 3
⊢
(+g‘𝐿) = (+g‘𝐿) |
27 | | eqid 2759 |
. . 3
⊢
(0g‘𝐿) = (0g‘𝐿) |
28 | 25, 26, 27 | grpidval 17930 |
. 2
⊢
(0g‘𝐿) = (℩𝑥(𝑥 ∈ (Base‘𝐿) ∧ ∀𝑦 ∈ (Base‘𝐿)((𝑥(+g‘𝐿)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐿)𝑥) = 𝑦))) |
29 | 20, 24, 28 | 3eqtr4g 2819 |
1
⊢ (𝜑 → (0g‘𝐾) = (0g‘𝐿)) |