| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpell1qr | Structured version Visualization version GIF version | ||
| Description: Membership in a first-quadrant Pell solution set. (Contributed by Stefan O'Rear, 17-Sep-2014.) |
| Ref | Expression |
|---|---|
| elpell1qr | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pell1qrval 42834 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) = {𝑎 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}) | |
| 2 | 1 | eleq2d 2814 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ 𝐴 ∈ {𝑎 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})) |
| 3 | eqeq1 2733 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ↔ 𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)))) | |
| 4 | 3 | anbi1d 631 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1) ↔ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))) |
| 5 | 4 | 2rexbidv 3202 | . . 3 ⊢ (𝑎 = 𝐴 → (∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1) ↔ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))) |
| 6 | 5 | elrab 3659 | . 2 ⊢ (𝐴 ∈ {𝑎 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)} ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))) |
| 7 | 2, 6 | bitrdi 287 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell1QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0 ∃𝑤 ∈ ℕ0 (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 ∖ cdif 3911 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ↑cexp 14026 √csqrt 15199 ◻NNcsquarenn 42824 Pell1QRcpell1qr 42825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-pell1qr 42830 |
| This theorem is referenced by: pell1qrss14 42856 pell14qrdich 42857 pell1qrge1 42858 pell1qr1 42859 pell1qrgap 42862 pellqrexplicit 42865 |
| Copyright terms: Public domain | W3C validator |