Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnf2 Structured version   Visualization version   GIF version

Theorem pimltpnf2 43348
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimltpnf2.1 𝑥𝐹
pimltpnf2.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimltpnf2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)

Proof of Theorem pimltpnf2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2955 . . . 4 𝑥𝐴
2 nfcv 2955 . . . 4 𝑦𝐴
3 nfv 1915 . . . 4 𝑦(𝐹𝑥) < +∞
4 pimltpnf2.1 . . . . . 6 𝑥𝐹
5 nfcv 2955 . . . . . 6 𝑥𝑦
64, 5nffv 6655 . . . . 5 𝑥(𝐹𝑦)
7 nfcv 2955 . . . . 5 𝑥 <
8 nfcv 2955 . . . . 5 𝑥+∞
96, 7, 8nfbr 5077 . . . 4 𝑥(𝐹𝑦) < +∞
10 fveq2 6645 . . . . 5 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq1d 5040 . . . 4 (𝑥 = 𝑦 → ((𝐹𝑥) < +∞ ↔ (𝐹𝑦) < +∞))
121, 2, 3, 9, 11cbvrabw 3437 . . 3 {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = {𝑦𝐴 ∣ (𝐹𝑦) < +∞}
1312a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = {𝑦𝐴 ∣ (𝐹𝑦) < +∞})
14 nfv 1915 . . 3 𝑦𝜑
15 pimltpnf2.2 . . . 4 (𝜑𝐹:𝐴⟶ℝ)
1615ffvelrnda 6828 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1714, 16pimltpnf 43341 . 2 (𝜑 → {𝑦𝐴 ∣ (𝐹𝑦) < +∞} = 𝐴)
1813, 17eqtrd 2833 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wnfc 2936  {crab 3110   class class class wbr 5030  wf 6320  cfv 6324  cr 10525  +∞cpnf 10661   < clt 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-pnf 10666  df-xr 10668  df-ltxr 10669
This theorem is referenced by:  smfpimltxr  43381
  Copyright terms: Public domain W3C validator