Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltpnf2 | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimltpnf2.1 | ⊢ Ⅎ𝑥𝐹 |
pimltpnf2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
Ref | Expression |
---|---|
pimltpnf2 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑦(𝐹‘𝑥) < +∞ | |
4 | pimltpnf2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑥𝑦 | |
6 | 4, 5 | nffv 6766 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
7 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥 < | |
8 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥+∞ | |
9 | 6, 7, 8 | nfbr 5117 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) < +∞ |
10 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
11 | 10 | breq1d 5080 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) < +∞ ↔ (𝐹‘𝑦) < +∞)) |
12 | 1, 2, 3, 9, 11 | cbvrabw 3414 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞} |
13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞}) |
14 | nfv 1918 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
15 | pimltpnf2.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
16 | 15 | ffvelrnda 6943 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
17 | 14, 16 | pimltpnf 44130 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞} = 𝐴) |
18 | 13, 17 | eqtrd 2778 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnfc 2886 {crab 3067 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 ℝcr 10801 +∞cpnf 10937 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-pnf 10942 df-xr 10944 df-ltxr 10945 |
This theorem is referenced by: smfpimltxr 44170 |
Copyright terms: Public domain | W3C validator |