MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsgsum Structured version   Visualization version   GIF version

Theorem tsmsgsum 22151
Description: The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmsid.b 𝐵 = (Base‘𝐺)
tsmsid.z 0 = (0g𝐺)
tsmsid.1 (𝜑𝐺 ∈ CMnd)
tsmsid.2 (𝜑𝐺 ∈ TopSp)
tsmsid.a (𝜑𝐴𝑉)
tsmsid.f (𝜑𝐹:𝐴𝐵)
tsmsid.w (𝜑𝐹 finSupp 0 )
tsmsgsum.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tsmsgsum (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}))

Proof of Theorem tsmsgsum
Dummy variables 𝑦 𝑧 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsid.2 . . . . . . 7 (𝜑𝐺 ∈ TopSp)
2 tsmsid.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 tsmsgsum.j . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
42, 3istps 20948 . . . . . . 7 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
51, 4sylib 209 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 toponuni 20928 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
75, 6syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
87eleq2d 2871 . . . 4 (𝜑 → (𝑥𝐵𝑥 𝐽))
9 elfpw 8503 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
109simplbi 487 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1110adantl 469 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
12 suppssdm 7538 . . . . . . . . . . . . . . 15 (𝐹 supp 0 ) ⊆ dom 𝐹
13 tsmsid.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴𝐵)
1412, 13fssdm 6268 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
1514ad2antrr 708 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ 𝐴)
1611, 15unssd 3988 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ⊆ 𝐴)
179simprbi 486 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
1817adantl 469 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
19 tsmsid.w . . . . . . . . . . . . . . 15 (𝜑𝐹 finSupp 0 )
2019ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹 finSupp 0 )
2120fsuppimpd 8517 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ∈ Fin)
22 unfi 8462 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ (𝐹 supp 0 ) ∈ Fin) → (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin)
2318, 21, 22syl2anc 575 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin)
24 elfpw 8503 . . . . . . . . . . . 12 ((𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦 ∪ (𝐹 supp 0 )) ⊆ 𝐴 ∧ (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin))
2516, 23, 24sylanbrc 574 . . . . . . . . . . 11 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin))
26 ssun1 3975 . . . . . . . . . . . . . . 15 𝑦 ⊆ (𝑦 ∪ (𝐹 supp 0 ))
27 id 22 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → 𝑧 = (𝑦 ∪ (𝐹 supp 0 )))
2826, 27syl5sseqr 3851 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → 𝑦𝑧)
29 pm5.5 352 . . . . . . . . . . . . . 14 (𝑦𝑧 → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
3028, 29syl 17 . . . . . . . . . . . . 13 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
31 reseq2 5592 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → (𝐹𝑧) = (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 ))))
3231oveq2d 6886 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))))
3332eleq1d 2870 . . . . . . . . . . . . 13 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3430, 33bitrd 270 . . . . . . . . . . . 12 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3534rspcv 3498 . . . . . . . . . . 11 ((𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3625, 35syl 17 . . . . . . . . . 10 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
37 tsmsid.z . . . . . . . . . . . 12 0 = (0g𝐺)
38 tsmsid.1 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ CMnd)
3938ad2antrr 708 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
40 tsmsid.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
4140ad2antrr 708 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
4213ad2antrr 708 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝐵)
43 ssun2 3976 . . . . . . . . . . . . 13 (𝐹 supp 0 ) ⊆ (𝑦 ∪ (𝐹 supp 0 ))
4443a1i 11 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ (𝑦 ∪ (𝐹 supp 0 )))
452, 37, 39, 41, 42, 44, 20gsumres 18511 . . . . . . . . . . 11 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) = (𝐺 Σg 𝐹))
4645eleq1d 2870 . . . . . . . . . 10 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢 ↔ (𝐺 Σg 𝐹) ∈ 𝑢))
4736, 46sylibd 230 . . . . . . . . 9 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg 𝐹) ∈ 𝑢))
4847rexlimdva 3219 . . . . . . . 8 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg 𝐹) ∈ 𝑢))
4919fsuppimpd 8517 . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
50 elfpw 8503 . . . . . . . . . . . 12 ((𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝐹 supp 0 ) ⊆ 𝐴 ∧ (𝐹 supp 0 ) ∈ Fin))
5114, 49, 50sylanbrc 574 . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin))
5251adantr 468 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → (𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin))
5338ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐺 ∈ CMnd)
5440ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐴𝑉)
5513ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐹:𝐴𝐵)
56 simprr 780 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐹 supp 0 ) ⊆ 𝑧)
5719ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐹 finSupp 0 )
582, 37, 53, 54, 55, 56, 57gsumres 18511 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg 𝐹))
59 simplrr 787 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg 𝐹) ∈ 𝑢)
6058, 59eqeltrd 2885 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)
6160expr 446 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6261ralrimiva 3154 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
63 sseq1 3823 . . . . . . . . . . 11 (𝑦 = (𝐹 supp 0 ) → (𝑦𝑧 ↔ (𝐹 supp 0 ) ⊆ 𝑧))
6463rspceaimv 3510 . . . . . . . . . 10 (((𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6552, 62, 64syl2anc 575 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6665expr 446 . . . . . . . 8 ((𝜑𝑢𝐽) → ((𝐺 Σg 𝐹) ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6748, 66impbid 203 . . . . . . 7 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg 𝐹) ∈ 𝑢))
68 disjsn 4438 . . . . . . . 8 ((𝑢 ∩ {(𝐺 Σg 𝐹)}) = ∅ ↔ ¬ (𝐺 Σg 𝐹) ∈ 𝑢)
6968necon2abii 3028 . . . . . . 7 ((𝐺 Σg 𝐹) ∈ 𝑢 ↔ (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)
7067, 69syl6bb 278 . . . . . 6 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))
7170imbi2d 331 . . . . 5 ((𝜑𝑢𝐽) → ((𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)))
7271ralbidva 3173 . . . 4 (𝜑 → (∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)))
738, 72anbi12d 618 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
74 eqid 2806 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
752, 3, 74, 38, 1, 40, 13eltsms 22145 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
76 topontop 20927 . . . . 5 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
775, 76syl 17 . . . 4 (𝜑𝐽 ∈ Top)
782, 37, 38, 40, 13, 19gsumcl 18513 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
7978snssd 4530 . . . . 5 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐵)
8079, 7sseqtrd 3838 . . . 4 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐽)
81 eqid 2806 . . . . 5 𝐽 = 𝐽
8281elcls2 21088 . . . 4 ((𝐽 ∈ Top ∧ {(𝐺 Σg 𝐹)} ⊆ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
8377, 80, 82syl2anc 575 . . 3 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
8473, 75, 833bitr4d 302 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)})))
8584eqrdv 2804 1 (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wne 2978  wral 3096  wrex 3097  cun 3767  cin 3768  wss 3769  c0 4116  𝒫 cpw 4351  {csn 4370   cuni 4630   class class class wbr 4844  cres 5313  wf 6093  cfv 6097  (class class class)co 6870   supp csupp 7525  Fincfn 8188   finSupp cfsupp 8510  Basecbs 16064  TopOpenctopn 16283  0gc0g 16301   Σg cgsu 16302  CMndccmn 18390  Topctop 20907  TopOnctopon 20924  TopSpctps 20946  clsccl 21032   tsums ctsu 22138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-isom 6106  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-supp 7526  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-oadd 7796  df-er 7975  df-map 8090  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-fsupp 8511  df-oi 8650  df-card 9044  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-n0 11556  df-z 11640  df-uz 11901  df-fz 12546  df-fzo 12686  df-seq 13021  df-hash 13334  df-0g 16303  df-gsum 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-cntz 17947  df-cmn 18392  df-fbas 19947  df-fg 19948  df-top 20908  df-topon 20925  df-topsp 20947  df-cld 21033  df-ntr 21034  df-cls 21035  df-nei 21112  df-fil 21859  df-fm 21951  df-flim 21952  df-flf 21953  df-tsms 22139
This theorem is referenced by:  tsmsid  22152  tgptsmscls  22162
  Copyright terms: Public domain W3C validator