Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsgsum Structured version   Visualization version   GIF version

Theorem tsmsgsum 22754
 Description: The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmsid.b 𝐵 = (Base‘𝐺)
tsmsid.z 0 = (0g𝐺)
tsmsid.1 (𝜑𝐺 ∈ CMnd)
tsmsid.2 (𝜑𝐺 ∈ TopSp)
tsmsid.a (𝜑𝐴𝑉)
tsmsid.f (𝜑𝐹:𝐴𝐵)
tsmsid.w (𝜑𝐹 finSupp 0 )
tsmsgsum.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tsmsgsum (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}))

Proof of Theorem tsmsgsum
Dummy variables 𝑦 𝑧 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsid.2 . . . . . . 7 (𝜑𝐺 ∈ TopSp)
2 tsmsid.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 tsmsgsum.j . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
42, 3istps 21549 . . . . . . 7 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
51, 4sylib 221 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 toponuni 21529 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
75, 6syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
87eleq2d 2875 . . . 4 (𝜑 → (𝑥𝐵𝑥 𝐽))
9 elfpw 8813 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
109simplbi 501 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1110adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
12 suppssdm 7829 . . . . . . . . . . . . . . 15 (𝐹 supp 0 ) ⊆ dom 𝐹
13 tsmsid.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴𝐵)
1412, 13fssdm 6505 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
1514ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ 𝐴)
1611, 15unssd 4113 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ⊆ 𝐴)
17 elinel2 4123 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
1817adantl 485 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
19 tsmsid.w . . . . . . . . . . . . . . 15 (𝜑𝐹 finSupp 0 )
2019ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹 finSupp 0 )
2120fsuppimpd 8827 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ∈ Fin)
22 unfi 8772 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ (𝐹 supp 0 ) ∈ Fin) → (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin)
2318, 21, 22syl2anc 587 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin)
24 elfpw 8813 . . . . . . . . . . . 12 ((𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦 ∪ (𝐹 supp 0 )) ⊆ 𝐴 ∧ (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin))
2516, 23, 24sylanbrc 586 . . . . . . . . . . 11 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin))
26 ssun1 4099 . . . . . . . . . . . . . . 15 𝑦 ⊆ (𝑦 ∪ (𝐹 supp 0 ))
27 id 22 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → 𝑧 = (𝑦 ∪ (𝐹 supp 0 )))
2826, 27sseqtrrid 3968 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → 𝑦𝑧)
29 pm5.5 365 . . . . . . . . . . . . . 14 (𝑦𝑧 → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
3028, 29syl 17 . . . . . . . . . . . . 13 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
31 reseq2 5814 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → (𝐹𝑧) = (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 ))))
3231oveq2d 7152 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))))
3332eleq1d 2874 . . . . . . . . . . . . 13 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3430, 33bitrd 282 . . . . . . . . . . . 12 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3534rspcv 3566 . . . . . . . . . . 11 ((𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3625, 35syl 17 . . . . . . . . . 10 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
37 tsmsid.z . . . . . . . . . . . 12 0 = (0g𝐺)
38 tsmsid.1 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ CMnd)
3938ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
40 tsmsid.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
4140ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
4213ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝐵)
43 ssun2 4100 . . . . . . . . . . . . 13 (𝐹 supp 0 ) ⊆ (𝑦 ∪ (𝐹 supp 0 ))
4443a1i 11 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ (𝑦 ∪ (𝐹 supp 0 )))
452, 37, 39, 41, 42, 44, 20gsumres 19030 . . . . . . . . . . 11 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) = (𝐺 Σg 𝐹))
4645eleq1d 2874 . . . . . . . . . 10 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢 ↔ (𝐺 Σg 𝐹) ∈ 𝑢))
4736, 46sylibd 242 . . . . . . . . 9 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg 𝐹) ∈ 𝑢))
4847rexlimdva 3243 . . . . . . . 8 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg 𝐹) ∈ 𝑢))
4919fsuppimpd 8827 . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
50 elfpw 8813 . . . . . . . . . . 11 ((𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝐹 supp 0 ) ⊆ 𝐴 ∧ (𝐹 supp 0 ) ∈ Fin))
5114, 49, 50sylanbrc 586 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin))
5238ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐺 ∈ CMnd)
5340ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐴𝑉)
5413ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐹:𝐴𝐵)
55 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐹 supp 0 ) ⊆ 𝑧)
5619ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐹 finSupp 0 )
572, 37, 52, 53, 54, 55, 56gsumres 19030 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg 𝐹))
58 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg 𝐹) ∈ 𝑢)
5957, 58eqeltrd 2890 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)
6059expr 460 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6160ralrimiva 3149 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
62 sseq1 3940 . . . . . . . . . . 11 (𝑦 = (𝐹 supp 0 ) → (𝑦𝑧 ↔ (𝐹 supp 0 ) ⊆ 𝑧))
6362rspceaimv 3576 . . . . . . . . . 10 (((𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6451, 61, 63syl2an2r 684 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6564expr 460 . . . . . . . 8 ((𝜑𝑢𝐽) → ((𝐺 Σg 𝐹) ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6648, 65impbid 215 . . . . . . 7 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg 𝐹) ∈ 𝑢))
67 disjsn 4607 . . . . . . . 8 ((𝑢 ∩ {(𝐺 Σg 𝐹)}) = ∅ ↔ ¬ (𝐺 Σg 𝐹) ∈ 𝑢)
6867necon2abii 3037 . . . . . . 7 ((𝐺 Σg 𝐹) ∈ 𝑢 ↔ (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)
6966, 68syl6bb 290 . . . . . 6 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))
7069imbi2d 344 . . . . 5 ((𝜑𝑢𝐽) → ((𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)))
7170ralbidva 3161 . . . 4 (𝜑 → (∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)))
728, 71anbi12d 633 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
73 eqid 2798 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
742, 3, 73, 38, 1, 40, 13eltsms 22748 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
75 topontop 21528 . . . . 5 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
765, 75syl 17 . . . 4 (𝜑𝐽 ∈ Top)
772, 37, 38, 40, 13, 19gsumcl 19032 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
7877snssd 4702 . . . . 5 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐵)
7978, 7sseqtrd 3955 . . . 4 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐽)
80 eqid 2798 . . . . 5 𝐽 = 𝐽
8180elcls2 21689 . . . 4 ((𝐽 ∈ Top ∧ {(𝐺 Σg 𝐹)} ⊆ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
8276, 79, 81syl2anc 587 . . 3 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
8372, 74, 823bitr4d 314 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)})))
8483eqrdv 2796 1 (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107   ∪ cun 3879   ∩ cin 3880   ⊆ wss 3881  ∅c0 4243  𝒫 cpw 4497  {csn 4525  ∪ cuni 4801   class class class wbr 5031   ↾ cres 5522  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   supp csupp 7816  Fincfn 8495   finSupp cfsupp 8820  Basecbs 16478  TopOpenctopn 16690  0gc0g 16708   Σg cgsu 16709  CMndccmn 18902  Topctop 21508  TopOnctopon 21525  TopSpctps 21547  clsccl 21633   tsums ctsu 22741 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-fzo 13032  df-seq 13368  df-hash 13690  df-0g 16710  df-gsum 16711  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-cntz 18443  df-cmn 18904  df-fbas 20092  df-fg 20093  df-top 21509  df-topon 21526  df-topsp 21548  df-cld 21634  df-ntr 21635  df-cls 21636  df-nei 21713  df-fil 22461  df-fm 22553  df-flim 22554  df-flf 22555  df-tsms 22742 This theorem is referenced by:  tsmsid  22755  tgptsmscls  22765
 Copyright terms: Public domain W3C validator