MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsgsum Structured version   Visualization version   GIF version

Theorem tsmsgsum 24052
Description: The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015.) (Revised by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmsid.b 𝐵 = (Base‘𝐺)
tsmsid.z 0 = (0g𝐺)
tsmsid.1 (𝜑𝐺 ∈ CMnd)
tsmsid.2 (𝜑𝐺 ∈ TopSp)
tsmsid.a (𝜑𝐴𝑉)
tsmsid.f (𝜑𝐹:𝐴𝐵)
tsmsid.w (𝜑𝐹 finSupp 0 )
tsmsgsum.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tsmsgsum (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}))

Proof of Theorem tsmsgsum
Dummy variables 𝑦 𝑧 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsid.2 . . . . . . 7 (𝜑𝐺 ∈ TopSp)
2 tsmsid.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 tsmsgsum.j . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
42, 3istps 22847 . . . . . . 7 (𝐺 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
51, 4sylib 218 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 toponuni 22827 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
75, 6syl 17 . . . . 5 (𝜑𝐵 = 𝐽)
87eleq2d 2817 . . . 4 (𝜑 → (𝑥𝐵𝑥 𝐽))
9 elfpw 9238 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
109simplbi 497 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1110adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
12 suppssdm 8107 . . . . . . . . . . . . . . 15 (𝐹 supp 0 ) ⊆ dom 𝐹
13 tsmsid.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴𝐵)
1412, 13fssdm 6670 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
1514ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ 𝐴)
1611, 15unssd 4142 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ⊆ 𝐴)
17 elinel2 4152 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
1817adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
19 tsmsid.w . . . . . . . . . . . . . . 15 (𝜑𝐹 finSupp 0 )
2019ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹 finSupp 0 )
2120fsuppimpd 9253 . . . . . . . . . . . . 13 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ∈ Fin)
22 unfi 9080 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ (𝐹 supp 0 ) ∈ Fin) → (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin)
2318, 21, 22syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin)
24 elfpw 9238 . . . . . . . . . . . 12 ((𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝑦 ∪ (𝐹 supp 0 )) ⊆ 𝐴 ∧ (𝑦 ∪ (𝐹 supp 0 )) ∈ Fin))
2516, 23, 24sylanbrc 583 . . . . . . . . . . 11 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin))
26 ssun1 4128 . . . . . . . . . . . . . . 15 𝑦 ⊆ (𝑦 ∪ (𝐹 supp 0 ))
27 id 22 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → 𝑧 = (𝑦 ∪ (𝐹 supp 0 )))
2826, 27sseqtrrid 3978 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → 𝑦𝑧)
29 pm5.5 361 . . . . . . . . . . . . . 14 (𝑦𝑧 → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
3028, 29syl 17 . . . . . . . . . . . . 13 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
31 reseq2 5923 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → (𝐹𝑧) = (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 ))))
3231oveq2d 7362 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))))
3332eleq1d 2816 . . . . . . . . . . . . 13 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3430, 33bitrd 279 . . . . . . . . . . . 12 (𝑧 = (𝑦 ∪ (𝐹 supp 0 )) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3534rspcv 3573 . . . . . . . . . . 11 ((𝑦 ∪ (𝐹 supp 0 )) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
3625, 35syl 17 . . . . . . . . . 10 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢))
37 tsmsid.z . . . . . . . . . . . 12 0 = (0g𝐺)
38 tsmsid.1 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ CMnd)
3938ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
40 tsmsid.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
4140ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
4213ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝐵)
43 ssun2 4129 . . . . . . . . . . . . 13 (𝐹 supp 0 ) ⊆ (𝑦 ∪ (𝐹 supp 0 ))
4443a1i 11 . . . . . . . . . . . 12 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹 supp 0 ) ⊆ (𝑦 ∪ (𝐹 supp 0 )))
452, 37, 39, 41, 42, 44, 20gsumres 19823 . . . . . . . . . . 11 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) = (𝐺 Σg 𝐹))
4645eleq1d 2816 . . . . . . . . . 10 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝑦 ∪ (𝐹 supp 0 )))) ∈ 𝑢 ↔ (𝐺 Σg 𝐹) ∈ 𝑢))
4736, 46sylibd 239 . . . . . . . . 9 (((𝜑𝑢𝐽) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg 𝐹) ∈ 𝑢))
4847rexlimdva 3133 . . . . . . . 8 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) → (𝐺 Σg 𝐹) ∈ 𝑢))
4919fsuppimpd 9253 . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
50 elfpw 9238 . . . . . . . . . . 11 ((𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin) ↔ ((𝐹 supp 0 ) ⊆ 𝐴 ∧ (𝐹 supp 0 ) ∈ Fin))
5114, 49, 50sylanbrc 583 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin))
5238ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐺 ∈ CMnd)
5340ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐴𝑉)
5413ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐹:𝐴𝐵)
55 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐹 supp 0 ) ⊆ 𝑧)
5619ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → 𝐹 finSupp 0 )
572, 37, 52, 53, 54, 55, 56gsumres 19823 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg 𝐹))
58 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg 𝐹) ∈ 𝑢)
5957, 58eqeltrd 2831 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐹 supp 0 ) ⊆ 𝑧)) → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)
6059expr 456 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) ∧ 𝑧 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6160ralrimiva 3124 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
62 sseq1 3960 . . . . . . . . . . 11 (𝑦 = (𝐹 supp 0 ) → (𝑦𝑧 ↔ (𝐹 supp 0 ) ⊆ 𝑧))
6362rspceaimv 3583 . . . . . . . . . 10 (((𝐹 supp 0 ) ∈ (𝒫 𝐴 ∩ Fin) ∧ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐹 supp 0 ) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6451, 61, 63syl2an2r 685 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝐽 ∧ (𝐺 Σg 𝐹) ∈ 𝑢)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))
6564expr 456 . . . . . . . 8 ((𝜑𝑢𝐽) → ((𝐺 Σg 𝐹) ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
6648, 65impbid 212 . . . . . . 7 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝐺 Σg 𝐹) ∈ 𝑢))
67 disjsn 4664 . . . . . . . 8 ((𝑢 ∩ {(𝐺 Σg 𝐹)}) = ∅ ↔ ¬ (𝐺 Σg 𝐹) ∈ 𝑢)
6867necon2abii 2978 . . . . . . 7 ((𝐺 Σg 𝐹) ∈ 𝑢 ↔ (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)
6966, 68bitrdi 287 . . . . . 6 ((𝜑𝑢𝐽) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))
7069imbi2d 340 . . . . 5 ((𝜑𝑢𝐽) → ((𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)))
7170ralbidva 3153 . . . 4 (𝜑 → (∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅)))
728, 71anbi12d 632 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
73 eqid 2731 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
742, 3, 73, 38, 1, 40, 13eltsms 24046 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
75 topontop 22826 . . . . 5 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
765, 75syl 17 . . . 4 (𝜑𝐽 ∈ Top)
772, 37, 38, 40, 13, 19gsumcl 19825 . . . . . 6 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
7877snssd 4761 . . . . 5 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐵)
7978, 7sseqtrd 3971 . . . 4 (𝜑 → {(𝐺 Σg 𝐹)} ⊆ 𝐽)
80 eqid 2731 . . . . 5 𝐽 = 𝐽
8180elcls2 22987 . . . 4 ((𝐽 ∈ Top ∧ {(𝐺 Σg 𝐹)} ⊆ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
8276, 79, 81syl2anc 584 . . 3 (𝜑 → (𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}) ↔ (𝑥 𝐽 ∧ ∀𝑢𝐽 (𝑥𝑢 → (𝑢 ∩ {(𝐺 Σg 𝐹)}) ≠ ∅))))
8372, 74, 823bitr4d 311 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ ((cls‘𝐽)‘{(𝐺 Σg 𝐹)})))
8483eqrdv 2729 1 (𝜑 → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{(𝐺 Σg 𝐹)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  cun 3900  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576   cuni 4859   class class class wbr 5091  cres 5618  wf 6477  cfv 6481  (class class class)co 7346   supp csupp 8090  Fincfn 8869   finSupp cfsupp 9245  Basecbs 17117  TopOpenctopn 17322  0gc0g 17340   Σg cgsu 17341  CMndccmn 19690  Topctop 22806  TopOnctopon 22823  TopSpctps 22845  clsccl 22931   tsums ctsu 24039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-0g 17342  df-gsum 17343  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-cntz 19227  df-cmn 19692  df-fbas 21286  df-fg 21287  df-top 22807  df-topon 22824  df-topsp 22846  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-tsms 24040
This theorem is referenced by:  tsmsid  24053  tgptsmscls  24063
  Copyright terms: Public domain W3C validator