MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12lem3 Structured version   Visualization version   GIF version

Theorem dfac12lem3 9563
Description: Lemma for dfac12 9567. (Contributed by Mario Carneiro, 29-May-2015.)
Hypotheses
Ref Expression
dfac12.1 (𝜑𝐴 ∈ On)
dfac12.3 (𝜑𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
dfac12.4 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
Assertion
Ref Expression
dfac12lem3 (𝜑 → (𝑅1𝐴) ∈ dom card)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐺   𝜑,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem dfac12lem3
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6676 . . . 4 (𝐺𝐴) ∈ V
21rnex 7609 . . 3 ran (𝐺𝐴) ∈ V
3 ssid 3987 . . . . 5 𝐴𝐴
4 dfac12.1 . . . . . 6 (𝜑𝐴 ∈ On)
5 sseq1 3990 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑚𝐴𝑛𝐴))
6 fveq2 6663 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝐺𝑚) = (𝐺𝑛))
7 f1eq1 6563 . . . . . . . . . . 11 ((𝐺𝑚) = (𝐺𝑛) → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑚)–1-1→On))
86, 7syl 17 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑚)–1-1→On))
9 fveq2 6663 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑅1𝑚) = (𝑅1𝑛))
10 f1eq2 6564 . . . . . . . . . . 11 ((𝑅1𝑚) = (𝑅1𝑛) → ((𝐺𝑛):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
119, 10syl 17 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐺𝑛):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
128, 11bitrd 281 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
135, 12imbi12d 347 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On) ↔ (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)))
1413imbi2d 343 . . . . . . 7 (𝑚 = 𝑛 → ((𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On)) ↔ (𝜑 → (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On))))
15 sseq1 3990 . . . . . . . . 9 (𝑚 = 𝐴 → (𝑚𝐴𝐴𝐴))
16 fveq2 6663 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝐺𝑚) = (𝐺𝐴))
17 f1eq1 6563 . . . . . . . . . . 11 ((𝐺𝑚) = (𝐺𝐴) → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝑚)–1-1→On))
1816, 17syl 17 . . . . . . . . . 10 (𝑚 = 𝐴 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝑚)–1-1→On))
19 fveq2 6663 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝑅1𝑚) = (𝑅1𝐴))
20 f1eq2 6564 . . . . . . . . . . 11 ((𝑅1𝑚) = (𝑅1𝐴) → ((𝐺𝐴):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝐴)–1-1→On))
2119, 20syl 17 . . . . . . . . . 10 (𝑚 = 𝐴 → ((𝐺𝐴):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝐴)–1-1→On))
2218, 21bitrd 281 . . . . . . . . 9 (𝑚 = 𝐴 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝐴)–1-1→On))
2315, 22imbi12d 347 . . . . . . . 8 (𝑚 = 𝐴 → ((𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On) ↔ (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On)))
2423imbi2d 343 . . . . . . 7 (𝑚 = 𝐴 → ((𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On)) ↔ (𝜑 → (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On))))
25 r19.21v 3173 . . . . . . . 8 (∀𝑛𝑚 (𝜑 → (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)) ↔ (𝜑 → ∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)))
26 eloni 6194 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ On → Ord 𝑚)
2726ad2antrl 726 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → Ord 𝑚)
28 ordelss 6200 . . . . . . . . . . . . . . . . 17 ((Ord 𝑚𝑛𝑚) → 𝑛𝑚)
2927, 28sylan 582 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → 𝑛𝑚)
30 simplrr 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → 𝑚𝐴)
3129, 30sstrd 3975 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → 𝑛𝐴)
32 pm5.5 364 . . . . . . . . . . . . . . 15 (𝑛𝐴 → ((𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
3331, 32syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → ((𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
3433ralbidva 3194 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) ↔ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On))
354ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝐴 ∈ On)
36 dfac12.3 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
3736ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
38 dfac12.4 . . . . . . . . . . . . . . 15 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
39 simplrl 775 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝑚 ∈ On)
40 eqid 2819 . . . . . . . . . . . . . . 15 (OrdIso( E , ran (𝐺 𝑚)) ∘ (𝐺 𝑚)) = (OrdIso( E , ran (𝐺 𝑚)) ∘ (𝐺 𝑚))
41 simplrr 776 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝑚𝐴)
42 simpr 487 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On)
43 fveq2 6663 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (𝐺𝑛) = (𝐺𝑧))
44 f1eq1 6563 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑛) = (𝐺𝑧) → ((𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑛)–1-1→On))
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑛)–1-1→On))
46 fveq2 6663 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (𝑅1𝑛) = (𝑅1𝑧))
47 f1eq2 6564 . . . . . . . . . . . . . . . . . . 19 ((𝑅1𝑛) = (𝑅1𝑧) → ((𝐺𝑧):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑧)–1-1→On))
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((𝐺𝑧):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑧)–1-1→On))
4945, 48bitrd 281 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → ((𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑧)–1-1→On))
5049cbvralvw 3448 . . . . . . . . . . . . . . . 16 (∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ ∀𝑧𝑚 (𝐺𝑧):(𝑅1𝑧)–1-1→On)
5142, 50sylib 220 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → ∀𝑧𝑚 (𝐺𝑧):(𝑅1𝑧)–1-1→On)
5235, 37, 38, 39, 40, 41, 51dfac12lem2 9562 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝐺𝑚):(𝑅1𝑚)–1-1→On)
5352ex 415 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → (∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On → (𝐺𝑚):(𝑅1𝑚)–1-1→On))
5434, 53sylbid 242 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝐺𝑚):(𝑅1𝑚)–1-1→On))
5554expr 459 . . . . . . . . . . 11 ((𝜑𝑚 ∈ On) → (𝑚𝐴 → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝐺𝑚):(𝑅1𝑚)–1-1→On)))
5655com23 86 . . . . . . . . . 10 ((𝜑𝑚 ∈ On) → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On)))
5756expcom 416 . . . . . . . . 9 (𝑚 ∈ On → (𝜑 → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On))))
5857a2d 29 . . . . . . . 8 (𝑚 ∈ On → ((𝜑 → ∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)) → (𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On))))
5925, 58syl5bi 244 . . . . . . 7 (𝑚 ∈ On → (∀𝑛𝑚 (𝜑 → (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)) → (𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On))))
6014, 24, 59tfis3 7564 . . . . . 6 (𝐴 ∈ On → (𝜑 → (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On)))
614, 60mpcom 38 . . . . 5 (𝜑 → (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On))
623, 61mpi 20 . . . 4 (𝜑 → (𝐺𝐴):(𝑅1𝐴)–1-1→On)
63 f1f 6568 . . . 4 ((𝐺𝐴):(𝑅1𝐴)–1-1→On → (𝐺𝐴):(𝑅1𝐴)⟶On)
64 frn 6513 . . . 4 ((𝐺𝐴):(𝑅1𝐴)⟶On → ran (𝐺𝐴) ⊆ On)
6562, 63, 643syl 18 . . 3 (𝜑 → ran (𝐺𝐴) ⊆ On)
66 onssnum 9458 . . 3 ((ran (𝐺𝐴) ∈ V ∧ ran (𝐺𝐴) ⊆ On) → ran (𝐺𝐴) ∈ dom card)
672, 65, 66sylancr 589 . 2 (𝜑 → ran (𝐺𝐴) ∈ dom card)
68 f1f1orn 6619 . . . 4 ((𝐺𝐴):(𝑅1𝐴)–1-1→On → (𝐺𝐴):(𝑅1𝐴)–1-1-onto→ran (𝐺𝐴))
6962, 68syl 17 . . 3 (𝜑 → (𝐺𝐴):(𝑅1𝐴)–1-1-onto→ran (𝐺𝐴))
70 fvex 6676 . . . 4 (𝑅1𝐴) ∈ V
7170f1oen 8522 . . 3 ((𝐺𝐴):(𝑅1𝐴)–1-1-onto→ran (𝐺𝐴) → (𝑅1𝐴) ≈ ran (𝐺𝐴))
72 ennum 9368 . . 3 ((𝑅1𝐴) ≈ ran (𝐺𝐴) → ((𝑅1𝐴) ∈ dom card ↔ ran (𝐺𝐴) ∈ dom card))
7369, 71, 723syl 18 . 2 (𝜑 → ((𝑅1𝐴) ∈ dom card ↔ ran (𝐺𝐴) ∈ dom card))
7467, 73mpbird 259 1 (𝜑 → (𝑅1𝐴) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wral 3136  Vcvv 3493  wss 3934  ifcif 4465  𝒫 cpw 4537   cuni 4830   class class class wbr 5057  cmpt 5137   E cep 5457  ccnv 5547  dom cdm 5548  ran crn 5549  cima 5551  ccom 5552  Ord word 6183  Oncon0 6184  suc csuc 6186  wf 6344  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  recscrecs 7999   +o coa 8091   ·o comu 8092  cen 8498  OrdIsocoi 8965  harchar 9012  𝑅1cr1 9183  rankcrnk 9184  cardccrd 9356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-oadd 8098  df-omul 8099  df-er 8281  df-en 8502  df-dom 8503  df-oi 8966  df-har 9014  df-r1 9185  df-rank 9186  df-card 9360
This theorem is referenced by:  dfac12r  9564
  Copyright terms: Public domain W3C validator