MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12lem3 Structured version   Visualization version   GIF version

Theorem dfac12lem3 9901
Description: Lemma for dfac12 9905. (Contributed by Mario Carneiro, 29-May-2015.)
Hypotheses
Ref Expression
dfac12.1 (𝜑𝐴 ∈ On)
dfac12.3 (𝜑𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
dfac12.4 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
Assertion
Ref Expression
dfac12lem3 (𝜑 → (𝑅1𝐴) ∈ dom card)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐺   𝜑,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem dfac12lem3
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6787 . . . 4 (𝐺𝐴) ∈ V
21rnex 7759 . . 3 ran (𝐺𝐴) ∈ V
3 ssid 3943 . . . . 5 𝐴𝐴
4 dfac12.1 . . . . . 6 (𝜑𝐴 ∈ On)
5 sseq1 3946 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑚𝐴𝑛𝐴))
6 fveq2 6774 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝐺𝑚) = (𝐺𝑛))
7 f1eq1 6665 . . . . . . . . . . 11 ((𝐺𝑚) = (𝐺𝑛) → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑚)–1-1→On))
86, 7syl 17 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑚)–1-1→On))
9 fveq2 6774 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑅1𝑚) = (𝑅1𝑛))
10 f1eq2 6666 . . . . . . . . . . 11 ((𝑅1𝑚) = (𝑅1𝑛) → ((𝐺𝑛):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
119, 10syl 17 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐺𝑛):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
128, 11bitrd 278 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
135, 12imbi12d 345 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On) ↔ (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)))
1413imbi2d 341 . . . . . . 7 (𝑚 = 𝑛 → ((𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On)) ↔ (𝜑 → (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On))))
15 sseq1 3946 . . . . . . . . 9 (𝑚 = 𝐴 → (𝑚𝐴𝐴𝐴))
16 fveq2 6774 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝐺𝑚) = (𝐺𝐴))
17 f1eq1 6665 . . . . . . . . . . 11 ((𝐺𝑚) = (𝐺𝐴) → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝑚)–1-1→On))
1816, 17syl 17 . . . . . . . . . 10 (𝑚 = 𝐴 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝑚)–1-1→On))
19 fveq2 6774 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝑅1𝑚) = (𝑅1𝐴))
20 f1eq2 6666 . . . . . . . . . . 11 ((𝑅1𝑚) = (𝑅1𝐴) → ((𝐺𝐴):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝐴)–1-1→On))
2119, 20syl 17 . . . . . . . . . 10 (𝑚 = 𝐴 → ((𝐺𝐴):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝐴)–1-1→On))
2218, 21bitrd 278 . . . . . . . . 9 (𝑚 = 𝐴 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝐴)–1-1→On))
2315, 22imbi12d 345 . . . . . . . 8 (𝑚 = 𝐴 → ((𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On) ↔ (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On)))
2423imbi2d 341 . . . . . . 7 (𝑚 = 𝐴 → ((𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On)) ↔ (𝜑 → (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On))))
25 r19.21v 3113 . . . . . . . 8 (∀𝑛𝑚 (𝜑 → (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)) ↔ (𝜑 → ∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)))
26 eloni 6276 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ On → Ord 𝑚)
2726ad2antrl 725 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → Ord 𝑚)
28 ordelss 6282 . . . . . . . . . . . . . . . . 17 ((Ord 𝑚𝑛𝑚) → 𝑛𝑚)
2927, 28sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → 𝑛𝑚)
30 simplrr 775 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → 𝑚𝐴)
3129, 30sstrd 3931 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → 𝑛𝐴)
32 pm5.5 362 . . . . . . . . . . . . . . 15 (𝑛𝐴 → ((𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
3331, 32syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → ((𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
3433ralbidva 3111 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) ↔ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On))
354ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝐴 ∈ On)
36 dfac12.3 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
3736ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
38 dfac12.4 . . . . . . . . . . . . . . 15 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
39 simplrl 774 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝑚 ∈ On)
40 eqid 2738 . . . . . . . . . . . . . . 15 (OrdIso( E , ran (𝐺 𝑚)) ∘ (𝐺 𝑚)) = (OrdIso( E , ran (𝐺 𝑚)) ∘ (𝐺 𝑚))
41 simplrr 775 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝑚𝐴)
42 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On)
43 fveq2 6774 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (𝐺𝑛) = (𝐺𝑧))
44 f1eq1 6665 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑛) = (𝐺𝑧) → ((𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑛)–1-1→On))
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑛)–1-1→On))
46 fveq2 6774 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (𝑅1𝑛) = (𝑅1𝑧))
47 f1eq2 6666 . . . . . . . . . . . . . . . . . . 19 ((𝑅1𝑛) = (𝑅1𝑧) → ((𝐺𝑧):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑧)–1-1→On))
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((𝐺𝑧):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑧)–1-1→On))
4945, 48bitrd 278 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → ((𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑧)–1-1→On))
5049cbvralvw 3383 . . . . . . . . . . . . . . . 16 (∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ ∀𝑧𝑚 (𝐺𝑧):(𝑅1𝑧)–1-1→On)
5142, 50sylib 217 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → ∀𝑧𝑚 (𝐺𝑧):(𝑅1𝑧)–1-1→On)
5235, 37, 38, 39, 40, 41, 51dfac12lem2 9900 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝐺𝑚):(𝑅1𝑚)–1-1→On)
5352ex 413 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → (∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On → (𝐺𝑚):(𝑅1𝑚)–1-1→On))
5434, 53sylbid 239 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝐺𝑚):(𝑅1𝑚)–1-1→On))
5554expr 457 . . . . . . . . . . 11 ((𝜑𝑚 ∈ On) → (𝑚𝐴 → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝐺𝑚):(𝑅1𝑚)–1-1→On)))
5655com23 86 . . . . . . . . . 10 ((𝜑𝑚 ∈ On) → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On)))
5756expcom 414 . . . . . . . . 9 (𝑚 ∈ On → (𝜑 → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On))))
5857a2d 29 . . . . . . . 8 (𝑚 ∈ On → ((𝜑 → ∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)) → (𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On))))
5925, 58syl5bi 241 . . . . . . 7 (𝑚 ∈ On → (∀𝑛𝑚 (𝜑 → (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)) → (𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On))))
6014, 24, 59tfis3 7704 . . . . . 6 (𝐴 ∈ On → (𝜑 → (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On)))
614, 60mpcom 38 . . . . 5 (𝜑 → (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On))
623, 61mpi 20 . . . 4 (𝜑 → (𝐺𝐴):(𝑅1𝐴)–1-1→On)
63 f1f 6670 . . . 4 ((𝐺𝐴):(𝑅1𝐴)–1-1→On → (𝐺𝐴):(𝑅1𝐴)⟶On)
64 frn 6607 . . . 4 ((𝐺𝐴):(𝑅1𝐴)⟶On → ran (𝐺𝐴) ⊆ On)
6562, 63, 643syl 18 . . 3 (𝜑 → ran (𝐺𝐴) ⊆ On)
66 onssnum 9796 . . 3 ((ran (𝐺𝐴) ∈ V ∧ ran (𝐺𝐴) ⊆ On) → ran (𝐺𝐴) ∈ dom card)
672, 65, 66sylancr 587 . 2 (𝜑 → ran (𝐺𝐴) ∈ dom card)
68 f1f1orn 6727 . . . 4 ((𝐺𝐴):(𝑅1𝐴)–1-1→On → (𝐺𝐴):(𝑅1𝐴)–1-1-onto→ran (𝐺𝐴))
6962, 68syl 17 . . 3 (𝜑 → (𝐺𝐴):(𝑅1𝐴)–1-1-onto→ran (𝐺𝐴))
70 fvex 6787 . . . 4 (𝑅1𝐴) ∈ V
7170f1oen 8761 . . 3 ((𝐺𝐴):(𝑅1𝐴)–1-1-onto→ran (𝐺𝐴) → (𝑅1𝐴) ≈ ran (𝐺𝐴))
72 ennum 9705 . . 3 ((𝑅1𝐴) ≈ ran (𝐺𝐴) → ((𝑅1𝐴) ∈ dom card ↔ ran (𝐺𝐴) ∈ dom card))
7369, 71, 723syl 18 . 2 (𝜑 → ((𝑅1𝐴) ∈ dom card ↔ ran (𝐺𝐴) ∈ dom card))
7467, 73mpbird 256 1 (𝜑 → (𝑅1𝐴) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  ifcif 4459  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  cmpt 5157   E cep 5494  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  ccom 5593  Ord word 6265  Oncon0 6266  suc csuc 6268  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  recscrecs 8201   +o coa 8294   ·o comu 8295  cen 8730  OrdIsocoi 9268  harchar 9315  𝑅1cr1 9520  rankcrnk 9521  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-oadd 8301  df-omul 8302  df-er 8498  df-en 8734  df-dom 8735  df-oi 9269  df-har 9316  df-r1 9522  df-rank 9523  df-card 9697
This theorem is referenced by:  dfac12r  9902
  Copyright terms: Public domain W3C validator