MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12lem3 Structured version   Visualization version   GIF version

Theorem dfac12lem3 9638
Description: Lemma for dfac12 9642. (Contributed by Mario Carneiro, 29-May-2015.)
Hypotheses
Ref Expression
dfac12.1 (𝜑𝐴 ∈ On)
dfac12.3 (𝜑𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
dfac12.4 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
Assertion
Ref Expression
dfac12lem3 (𝜑 → (𝑅1𝐴) ∈ dom card)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐺   𝜑,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem dfac12lem3
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6681 . . . 4 (𝐺𝐴) ∈ V
21rnex 7636 . . 3 ran (𝐺𝐴) ∈ V
3 ssid 3897 . . . . 5 𝐴𝐴
4 dfac12.1 . . . . . 6 (𝜑𝐴 ∈ On)
5 sseq1 3900 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑚𝐴𝑛𝐴))
6 fveq2 6668 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝐺𝑚) = (𝐺𝑛))
7 f1eq1 6563 . . . . . . . . . . 11 ((𝐺𝑚) = (𝐺𝑛) → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑚)–1-1→On))
86, 7syl 17 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑚)–1-1→On))
9 fveq2 6668 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑅1𝑚) = (𝑅1𝑛))
10 f1eq2 6564 . . . . . . . . . . 11 ((𝑅1𝑚) = (𝑅1𝑛) → ((𝐺𝑛):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
119, 10syl 17 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐺𝑛):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
128, 11bitrd 282 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
135, 12imbi12d 348 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On) ↔ (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)))
1413imbi2d 344 . . . . . . 7 (𝑚 = 𝑛 → ((𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On)) ↔ (𝜑 → (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On))))
15 sseq1 3900 . . . . . . . . 9 (𝑚 = 𝐴 → (𝑚𝐴𝐴𝐴))
16 fveq2 6668 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝐺𝑚) = (𝐺𝐴))
17 f1eq1 6563 . . . . . . . . . . 11 ((𝐺𝑚) = (𝐺𝐴) → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝑚)–1-1→On))
1816, 17syl 17 . . . . . . . . . 10 (𝑚 = 𝐴 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝑚)–1-1→On))
19 fveq2 6668 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝑅1𝑚) = (𝑅1𝐴))
20 f1eq2 6564 . . . . . . . . . . 11 ((𝑅1𝑚) = (𝑅1𝐴) → ((𝐺𝐴):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝐴)–1-1→On))
2119, 20syl 17 . . . . . . . . . 10 (𝑚 = 𝐴 → ((𝐺𝐴):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝐴)–1-1→On))
2218, 21bitrd 282 . . . . . . . . 9 (𝑚 = 𝐴 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝐴)–1-1→On))
2315, 22imbi12d 348 . . . . . . . 8 (𝑚 = 𝐴 → ((𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On) ↔ (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On)))
2423imbi2d 344 . . . . . . 7 (𝑚 = 𝐴 → ((𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On)) ↔ (𝜑 → (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On))))
25 r19.21v 3089 . . . . . . . 8 (∀𝑛𝑚 (𝜑 → (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)) ↔ (𝜑 → ∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)))
26 eloni 6176 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ On → Ord 𝑚)
2726ad2antrl 728 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → Ord 𝑚)
28 ordelss 6182 . . . . . . . . . . . . . . . . 17 ((Ord 𝑚𝑛𝑚) → 𝑛𝑚)
2927, 28sylan 583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → 𝑛𝑚)
30 simplrr 778 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → 𝑚𝐴)
3129, 30sstrd 3885 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → 𝑛𝐴)
32 pm5.5 365 . . . . . . . . . . . . . . 15 (𝑛𝐴 → ((𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
3331, 32syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → ((𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
3433ralbidva 3108 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) ↔ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On))
354ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝐴 ∈ On)
36 dfac12.3 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
3736ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
38 dfac12.4 . . . . . . . . . . . . . . 15 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
39 simplrl 777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝑚 ∈ On)
40 eqid 2738 . . . . . . . . . . . . . . 15 (OrdIso( E , ran (𝐺 𝑚)) ∘ (𝐺 𝑚)) = (OrdIso( E , ran (𝐺 𝑚)) ∘ (𝐺 𝑚))
41 simplrr 778 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝑚𝐴)
42 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On)
43 fveq2 6668 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (𝐺𝑛) = (𝐺𝑧))
44 f1eq1 6563 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑛) = (𝐺𝑧) → ((𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑛)–1-1→On))
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑛)–1-1→On))
46 fveq2 6668 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (𝑅1𝑛) = (𝑅1𝑧))
47 f1eq2 6564 . . . . . . . . . . . . . . . . . . 19 ((𝑅1𝑛) = (𝑅1𝑧) → ((𝐺𝑧):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑧)–1-1→On))
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((𝐺𝑧):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑧)–1-1→On))
4945, 48bitrd 282 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → ((𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑧)–1-1→On))
5049cbvralvw 3348 . . . . . . . . . . . . . . . 16 (∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ ∀𝑧𝑚 (𝐺𝑧):(𝑅1𝑧)–1-1→On)
5142, 50sylib 221 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → ∀𝑧𝑚 (𝐺𝑧):(𝑅1𝑧)–1-1→On)
5235, 37, 38, 39, 40, 41, 51dfac12lem2 9637 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝐺𝑚):(𝑅1𝑚)–1-1→On)
5352ex 416 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → (∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On → (𝐺𝑚):(𝑅1𝑚)–1-1→On))
5434, 53sylbid 243 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝐺𝑚):(𝑅1𝑚)–1-1→On))
5554expr 460 . . . . . . . . . . 11 ((𝜑𝑚 ∈ On) → (𝑚𝐴 → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝐺𝑚):(𝑅1𝑚)–1-1→On)))
5655com23 86 . . . . . . . . . 10 ((𝜑𝑚 ∈ On) → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On)))
5756expcom 417 . . . . . . . . 9 (𝑚 ∈ On → (𝜑 → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On))))
5857a2d 29 . . . . . . . 8 (𝑚 ∈ On → ((𝜑 → ∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)) → (𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On))))
5925, 58syl5bi 245 . . . . . . 7 (𝑚 ∈ On → (∀𝑛𝑚 (𝜑 → (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)) → (𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On))))
6014, 24, 59tfis3 7585 . . . . . 6 (𝐴 ∈ On → (𝜑 → (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On)))
614, 60mpcom 38 . . . . 5 (𝜑 → (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On))
623, 61mpi 20 . . . 4 (𝜑 → (𝐺𝐴):(𝑅1𝐴)–1-1→On)
63 f1f 6568 . . . 4 ((𝐺𝐴):(𝑅1𝐴)–1-1→On → (𝐺𝐴):(𝑅1𝐴)⟶On)
64 frn 6505 . . . 4 ((𝐺𝐴):(𝑅1𝐴)⟶On → ran (𝐺𝐴) ⊆ On)
6562, 63, 643syl 18 . . 3 (𝜑 → ran (𝐺𝐴) ⊆ On)
66 onssnum 9533 . . 3 ((ran (𝐺𝐴) ∈ V ∧ ran (𝐺𝐴) ⊆ On) → ran (𝐺𝐴) ∈ dom card)
672, 65, 66sylancr 590 . 2 (𝜑 → ran (𝐺𝐴) ∈ dom card)
68 f1f1orn 6623 . . . 4 ((𝐺𝐴):(𝑅1𝐴)–1-1→On → (𝐺𝐴):(𝑅1𝐴)–1-1-onto→ran (𝐺𝐴))
6962, 68syl 17 . . 3 (𝜑 → (𝐺𝐴):(𝑅1𝐴)–1-1-onto→ran (𝐺𝐴))
70 fvex 6681 . . . 4 (𝑅1𝐴) ∈ V
7170f1oen 8569 . . 3 ((𝐺𝐴):(𝑅1𝐴)–1-1-onto→ran (𝐺𝐴) → (𝑅1𝐴) ≈ ran (𝐺𝐴))
72 ennum 9442 . . 3 ((𝑅1𝐴) ≈ ran (𝐺𝐴) → ((𝑅1𝐴) ∈ dom card ↔ ran (𝐺𝐴) ∈ dom card))
7369, 71, 723syl 18 . 2 (𝜑 → ((𝑅1𝐴) ∈ dom card ↔ ran (𝐺𝐴) ∈ dom card))
7467, 73mpbird 260 1 (𝜑 → (𝑅1𝐴) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wral 3053  Vcvv 3397  wss 3841  ifcif 4411  𝒫 cpw 4485   cuni 4793   class class class wbr 5027  cmpt 5107   E cep 5429  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  ccom 5523  Ord word 6165  Oncon0 6166  suc csuc 6168  wf 6329  1-1wf1 6330  1-1-ontowf1o 6332  cfv 6333  (class class class)co 7164  recscrecs 8029   +o coa 8121   ·o comu 8122  cen 8545  OrdIsocoi 9039  harchar 9086  𝑅1cr1 9257  rankcrnk 9258  cardccrd 9430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-oadd 8128  df-omul 8129  df-er 8313  df-en 8549  df-dom 8550  df-oi 9040  df-har 9087  df-r1 9259  df-rank 9260  df-card 9434
This theorem is referenced by:  dfac12r  9639
  Copyright terms: Public domain W3C validator