MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12lem3 Structured version   Visualization version   GIF version

Theorem dfac12lem3 10215
Description: Lemma for dfac12 10219. (Contributed by Mario Carneiro, 29-May-2015.)
Hypotheses
Ref Expression
dfac12.1 (𝜑𝐴 ∈ On)
dfac12.3 (𝜑𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
dfac12.4 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
Assertion
Ref Expression
dfac12lem3 (𝜑 → (𝑅1𝐴) ∈ dom card)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐺   𝜑,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem dfac12lem3
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6933 . . . 4 (𝐺𝐴) ∈ V
21rnex 7950 . . 3 ran (𝐺𝐴) ∈ V
3 ssid 4031 . . . . 5 𝐴𝐴
4 dfac12.1 . . . . . 6 (𝜑𝐴 ∈ On)
5 sseq1 4034 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑚𝐴𝑛𝐴))
6 fveq2 6920 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝐺𝑚) = (𝐺𝑛))
7 f1eq1 6812 . . . . . . . . . . 11 ((𝐺𝑚) = (𝐺𝑛) → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑚)–1-1→On))
86, 7syl 17 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑚)–1-1→On))
9 fveq2 6920 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑅1𝑚) = (𝑅1𝑛))
10 f1eq2 6813 . . . . . . . . . . 11 ((𝑅1𝑚) = (𝑅1𝑛) → ((𝐺𝑛):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
119, 10syl 17 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐺𝑛):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
128, 11bitrd 279 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
135, 12imbi12d 344 . . . . . . . 8 (𝑚 = 𝑛 → ((𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On) ↔ (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)))
1413imbi2d 340 . . . . . . 7 (𝑚 = 𝑛 → ((𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On)) ↔ (𝜑 → (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On))))
15 sseq1 4034 . . . . . . . . 9 (𝑚 = 𝐴 → (𝑚𝐴𝐴𝐴))
16 fveq2 6920 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝐺𝑚) = (𝐺𝐴))
17 f1eq1 6812 . . . . . . . . . . 11 ((𝐺𝑚) = (𝐺𝐴) → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝑚)–1-1→On))
1816, 17syl 17 . . . . . . . . . 10 (𝑚 = 𝐴 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝑚)–1-1→On))
19 fveq2 6920 . . . . . . . . . . 11 (𝑚 = 𝐴 → (𝑅1𝑚) = (𝑅1𝐴))
20 f1eq2 6813 . . . . . . . . . . 11 ((𝑅1𝑚) = (𝑅1𝐴) → ((𝐺𝐴):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝐴)–1-1→On))
2119, 20syl 17 . . . . . . . . . 10 (𝑚 = 𝐴 → ((𝐺𝐴):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝐴)–1-1→On))
2218, 21bitrd 279 . . . . . . . . 9 (𝑚 = 𝐴 → ((𝐺𝑚):(𝑅1𝑚)–1-1→On ↔ (𝐺𝐴):(𝑅1𝐴)–1-1→On))
2315, 22imbi12d 344 . . . . . . . 8 (𝑚 = 𝐴 → ((𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On) ↔ (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On)))
2423imbi2d 340 . . . . . . 7 (𝑚 = 𝐴 → ((𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On)) ↔ (𝜑 → (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On))))
25 r19.21v 3186 . . . . . . . 8 (∀𝑛𝑚 (𝜑 → (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)) ↔ (𝜑 → ∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)))
26 eloni 6405 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ On → Ord 𝑚)
2726ad2antrl 727 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → Ord 𝑚)
28 ordelss 6411 . . . . . . . . . . . . . . . . 17 ((Ord 𝑚𝑛𝑚) → 𝑛𝑚)
2927, 28sylan 579 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → 𝑛𝑚)
30 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → 𝑚𝐴)
3129, 30sstrd 4019 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → 𝑛𝐴)
32 pm5.5 361 . . . . . . . . . . . . . . 15 (𝑛𝐴 → ((𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
3331, 32syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ 𝑛𝑚) → ((𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) ↔ (𝐺𝑛):(𝑅1𝑛)–1-1→On))
3433ralbidva 3182 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) ↔ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On))
354ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝐴 ∈ On)
36 dfac12.3 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
3736ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝐹:𝒫 (har‘(𝑅1𝐴))–1-1→On)
38 dfac12.4 . . . . . . . . . . . . . . 15 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom 𝑥) ↦ if(dom 𝑥 = dom 𝑥, ((suc ran ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((OrdIso( E , ran (𝑥 dom 𝑥)) ∘ (𝑥 dom 𝑥)) “ 𝑦))))))
39 simplrl 776 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝑚 ∈ On)
40 eqid 2740 . . . . . . . . . . . . . . 15 (OrdIso( E , ran (𝐺 𝑚)) ∘ (𝐺 𝑚)) = (OrdIso( E , ran (𝐺 𝑚)) ∘ (𝐺 𝑚))
41 simplrr 777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → 𝑚𝐴)
42 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On)
43 fveq2 6920 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (𝐺𝑛) = (𝐺𝑧))
44 f1eq1 6812 . . . . . . . . . . . . . . . . . . 19 ((𝐺𝑛) = (𝐺𝑧) → ((𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑛)–1-1→On))
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑛)–1-1→On))
46 fveq2 6920 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (𝑅1𝑛) = (𝑅1𝑧))
47 f1eq2 6813 . . . . . . . . . . . . . . . . . . 19 ((𝑅1𝑛) = (𝑅1𝑧) → ((𝐺𝑧):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑧)–1-1→On))
4846, 47syl 17 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((𝐺𝑧):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑧)–1-1→On))
4945, 48bitrd 279 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → ((𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ (𝐺𝑧):(𝑅1𝑧)–1-1→On))
5049cbvralvw 3243 . . . . . . . . . . . . . . . 16 (∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On ↔ ∀𝑧𝑚 (𝐺𝑧):(𝑅1𝑧)–1-1→On)
5142, 50sylib 218 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → ∀𝑧𝑚 (𝐺𝑧):(𝑅1𝑧)–1-1→On)
5235, 37, 38, 39, 40, 41, 51dfac12lem2 10214 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) ∧ ∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝐺𝑚):(𝑅1𝑚)–1-1→On)
5352ex 412 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → (∀𝑛𝑚 (𝐺𝑛):(𝑅1𝑛)–1-1→On → (𝐺𝑚):(𝑅1𝑚)–1-1→On))
5434, 53sylbid 240 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚 ∈ On ∧ 𝑚𝐴)) → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝐺𝑚):(𝑅1𝑚)–1-1→On))
5554expr 456 . . . . . . . . . . 11 ((𝜑𝑚 ∈ On) → (𝑚𝐴 → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝐺𝑚):(𝑅1𝑚)–1-1→On)))
5655com23 86 . . . . . . . . . 10 ((𝜑𝑚 ∈ On) → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On)))
5756expcom 413 . . . . . . . . 9 (𝑚 ∈ On → (𝜑 → (∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On) → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On))))
5857a2d 29 . . . . . . . 8 (𝑚 ∈ On → ((𝜑 → ∀𝑛𝑚 (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)) → (𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On))))
5925, 58biimtrid 242 . . . . . . 7 (𝑚 ∈ On → (∀𝑛𝑚 (𝜑 → (𝑛𝐴 → (𝐺𝑛):(𝑅1𝑛)–1-1→On)) → (𝜑 → (𝑚𝐴 → (𝐺𝑚):(𝑅1𝑚)–1-1→On))))
6014, 24, 59tfis3 7895 . . . . . 6 (𝐴 ∈ On → (𝜑 → (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On)))
614, 60mpcom 38 . . . . 5 (𝜑 → (𝐴𝐴 → (𝐺𝐴):(𝑅1𝐴)–1-1→On))
623, 61mpi 20 . . . 4 (𝜑 → (𝐺𝐴):(𝑅1𝐴)–1-1→On)
63 f1f 6817 . . . 4 ((𝐺𝐴):(𝑅1𝐴)–1-1→On → (𝐺𝐴):(𝑅1𝐴)⟶On)
64 frn 6754 . . . 4 ((𝐺𝐴):(𝑅1𝐴)⟶On → ran (𝐺𝐴) ⊆ On)
6562, 63, 643syl 18 . . 3 (𝜑 → ran (𝐺𝐴) ⊆ On)
66 onssnum 10109 . . 3 ((ran (𝐺𝐴) ∈ V ∧ ran (𝐺𝐴) ⊆ On) → ran (𝐺𝐴) ∈ dom card)
672, 65, 66sylancr 586 . 2 (𝜑 → ran (𝐺𝐴) ∈ dom card)
68 f1f1orn 6873 . . . 4 ((𝐺𝐴):(𝑅1𝐴)–1-1→On → (𝐺𝐴):(𝑅1𝐴)–1-1-onto→ran (𝐺𝐴))
6962, 68syl 17 . . 3 (𝜑 → (𝐺𝐴):(𝑅1𝐴)–1-1-onto→ran (𝐺𝐴))
70 fvex 6933 . . . 4 (𝑅1𝐴) ∈ V
7170f1oen 9033 . . 3 ((𝐺𝐴):(𝑅1𝐴)–1-1-onto→ran (𝐺𝐴) → (𝑅1𝐴) ≈ ran (𝐺𝐴))
72 ennum 10016 . . 3 ((𝑅1𝐴) ≈ ran (𝐺𝐴) → ((𝑅1𝐴) ∈ dom card ↔ ran (𝐺𝐴) ∈ dom card))
7369, 71, 723syl 18 . 2 (𝜑 → ((𝑅1𝐴) ∈ dom card ↔ ran (𝐺𝐴) ∈ dom card))
7467, 73mpbird 257 1 (𝜑 → (𝑅1𝐴) ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  ifcif 4548  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  cmpt 5249   E cep 5598  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  ccom 5704  Ord word 6394  Oncon0 6395  suc csuc 6397  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  recscrecs 8426   +o coa 8519   ·o comu 8520  cen 9000  OrdIsocoi 9578  harchar 9625  𝑅1cr1 9831  rankcrnk 9832  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-oadd 8526  df-omul 8527  df-er 8763  df-en 9004  df-dom 9005  df-oi 9579  df-har 9626  df-r1 9833  df-rank 9834  df-card 10008
This theorem is referenced by:  dfac12r  10216
  Copyright terms: Public domain W3C validator