MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indstr2 Structured version   Visualization version   GIF version

Theorem indstr2 12827
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
Hypotheses
Ref Expression
indstr2.1 (𝑥 = 1 → (𝜑𝜒))
indstr2.2 (𝑥 = 𝑦 → (𝜑𝜓))
indstr2.3 𝜒
indstr2.4 (𝑥 ∈ (ℤ‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
Assertion
Ref Expression
indstr2 (𝑥 ∈ ℕ → 𝜑)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem indstr2
StepHypRef Expression
1 indstr2.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
2 elnn1uz2 12825 . . 3 (𝑥 ∈ ℕ ↔ (𝑥 = 1 ∨ 𝑥 ∈ (ℤ‘2)))
3 indstr2.3 . . . . 5 𝜒
4 nnnlt1 12164 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ¬ 𝑦 < 1)
54adantl 481 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 1)
6 breq2 5097 . . . . . . . . . . 11 (𝑥 = 1 → (𝑦 < 𝑥𝑦 < 1))
76adantr 480 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥𝑦 < 1))
85, 7mtbird 325 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 𝑥)
98pm2.21d 121 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥𝜓))
109ralrimiva 3125 . . . . . . 7 (𝑥 = 1 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓))
11 pm5.5 361 . . . . . . 7 (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜑))
1210, 11syl 17 . . . . . 6 (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜑))
13 indstr2.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜒))
1412, 13bitrd 279 . . . . 5 (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜒))
153, 14mpbiri 258 . . . 4 (𝑥 = 1 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
16 indstr2.4 . . . 4 (𝑥 ∈ (ℤ‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
1715, 16jaoi 857 . . 3 ((𝑥 = 1 ∨ 𝑥 ∈ (ℤ‘2)) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
182, 17sylbi 217 . 2 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
191, 18indstr 12816 1 (𝑥 ∈ ℕ → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5093  cfv 6486  1c1 11014   < clt 11153  cn 12132  2c2 12187  cuz 12738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739
This theorem is referenced by:  nn0prpwlem  36387
  Copyright terms: Public domain W3C validator