MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indstr2 Structured version   Visualization version   GIF version

Theorem indstr2 12135
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
Hypotheses
Ref Expression
indstr2.1 (𝑥 = 1 → (𝜑𝜒))
indstr2.2 (𝑥 = 𝑦 → (𝜑𝜓))
indstr2.3 𝜒
indstr2.4 (𝑥 ∈ (ℤ‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
Assertion
Ref Expression
indstr2 (𝑥 ∈ ℕ → 𝜑)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem indstr2
StepHypRef Expression
1 indstr2.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
2 elnn1uz2 12133 . . 3 (𝑥 ∈ ℕ ↔ (𝑥 = 1 ∨ 𝑥 ∈ (ℤ‘2)))
3 indstr2.3 . . . . 5 𝜒
4 nnnlt1 11466 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ¬ 𝑦 < 1)
54adantl 474 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 1)
6 breq2 4927 . . . . . . . . . . 11 (𝑥 = 1 → (𝑦 < 𝑥𝑦 < 1))
76adantr 473 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥𝑦 < 1))
85, 7mtbird 317 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 𝑥)
98pm2.21d 119 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥𝜓))
109ralrimiva 3126 . . . . . . 7 (𝑥 = 1 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓))
11 pm5.5 354 . . . . . . 7 (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜑))
1210, 11syl 17 . . . . . 6 (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜑))
13 indstr2.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜒))
1412, 13bitrd 271 . . . . 5 (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜒))
153, 14mpbiri 250 . . . 4 (𝑥 = 1 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
16 indstr2.4 . . . 4 (𝑥 ∈ (ℤ‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
1715, 16jaoi 843 . . 3 ((𝑥 = 1 ∨ 𝑥 ∈ (ℤ‘2)) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
182, 17sylbi 209 . 2 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
191, 18indstr 12124 1 (𝑥 ∈ ℕ → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wcel 2050  wral 3082   class class class wbr 4923  cfv 6182  1c1 10330   < clt 10468  cn 11433  2c2 11489  cuz 12052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-nn 11434  df-2 11497  df-n0 11702  df-z 11788  df-uz 12053
This theorem is referenced by:  nn0prpwlem  33191
  Copyright terms: Public domain W3C validator