MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indstr2 Structured version   Visualization version   GIF version

Theorem indstr2 12596
Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012.)
Hypotheses
Ref Expression
indstr2.1 (𝑥 = 1 → (𝜑𝜒))
indstr2.2 (𝑥 = 𝑦 → (𝜑𝜓))
indstr2.3 𝜒
indstr2.4 (𝑥 ∈ (ℤ‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
Assertion
Ref Expression
indstr2 (𝑥 ∈ ℕ → 𝜑)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem indstr2
StepHypRef Expression
1 indstr2.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
2 elnn1uz2 12594 . . 3 (𝑥 ∈ ℕ ↔ (𝑥 = 1 ∨ 𝑥 ∈ (ℤ‘2)))
3 indstr2.3 . . . . 5 𝜒
4 nnnlt1 11935 . . . . . . . . . . 11 (𝑦 ∈ ℕ → ¬ 𝑦 < 1)
54adantl 481 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 1)
6 breq2 5074 . . . . . . . . . . 11 (𝑥 = 1 → (𝑦 < 𝑥𝑦 < 1))
76adantr 480 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥𝑦 < 1))
85, 7mtbird 324 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → ¬ 𝑦 < 𝑥)
98pm2.21d 121 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥𝜓))
109ralrimiva 3107 . . . . . . 7 (𝑥 = 1 → ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓))
11 pm5.5 361 . . . . . . 7 (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜑))
1210, 11syl 17 . . . . . 6 (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜑))
13 indstr2.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜒))
1412, 13bitrd 278 . . . . 5 (𝑥 = 1 → ((∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑) ↔ 𝜒))
153, 14mpbiri 257 . . . 4 (𝑥 = 1 → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
16 indstr2.4 . . . 4 (𝑥 ∈ (ℤ‘2) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
1715, 16jaoi 853 . . 3 ((𝑥 = 1 ∨ 𝑥 ∈ (ℤ‘2)) → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
182, 17sylbi 216 . 2 (𝑥 ∈ ℕ → (∀𝑦 ∈ ℕ (𝑦 < 𝑥𝜓) → 𝜑))
191, 18indstr 12585 1 (𝑥 ∈ ℕ → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cfv 6418  1c1 10803   < clt 10940  cn 11903  2c2 11958  cuz 12511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512
This theorem is referenced by:  nn0prpwlem  34438
  Copyright terms: Public domain W3C validator