Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem4 Structured version   Visualization version   GIF version

Theorem lcmineqlem4 39320
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. F is found in lcmineqlem6 39322. (Contributed by metakunt, 10-May-2024.)
Hypotheses
Ref Expression
lcmineqlem4.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem4.2 (𝜑𝑀 ∈ ℕ)
lcmineqlem4.3 (𝜑𝑀𝑁)
lcmineqlem4.4 (𝜑𝐾 ∈ (0...(𝑁𝑀)))
Assertion
Ref Expression
lcmineqlem4 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ)

Proof of Theorem lcmineqlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 breq1 5033 . . . 4 (𝑘 = (𝑀 + 𝐾) → (𝑘 ∥ (lcm‘(1...𝑁)) ↔ (𝑀 + 𝐾) ∥ (lcm‘(1...𝑁))))
2 fzssz 12904 . . . . . . 7 (1...𝑁) ⊆ ℤ
3 fzfi 13335 . . . . . . 7 (1...𝑁) ∈ Fin
42, 3pm3.2i 474 . . . . . 6 ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin)
54a1i 11 . . . . 5 (𝜑 → ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin))
6 dvdslcmf 15965 . . . . 5 (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin) → ∀𝑘 ∈ (1...𝑁)𝑘 ∥ (lcm‘(1...𝑁)))
75, 6syl 17 . . . 4 (𝜑 → ∀𝑘 ∈ (1...𝑁)𝑘 ∥ (lcm‘(1...𝑁)))
8 1zzd 12001 . . . . 5 (𝜑 → 1 ∈ ℤ)
9 lcmineqlem4.2 . . . . . 6 (𝜑𝑀 ∈ ℕ)
109nnzd 12074 . . . . 5 (𝜑𝑀 ∈ ℤ)
11 0zd 11981 . . . . 5 (𝜑 → 0 ∈ ℤ)
12 lcmineqlem4.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
1312nnzd 12074 . . . . . 6 (𝜑𝑁 ∈ ℤ)
1413, 10zsubcld 12080 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℤ)
159nnred 11640 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
1615leidd 11195 . . . . . 6 (𝜑𝑀𝑀)
17 fznn 12970 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 ∈ (1...𝑀) ↔ (𝑀 ∈ ℕ ∧ 𝑀𝑀)))
1810, 17syl 17 . . . . . 6 (𝜑 → (𝑀 ∈ (1...𝑀) ↔ (𝑀 ∈ ℕ ∧ 𝑀𝑀)))
199, 16, 18mpbir2and 712 . . . . 5 (𝜑𝑀 ∈ (1...𝑀))
20 lcmineqlem4.4 . . . . 5 (𝜑𝐾 ∈ (0...(𝑁𝑀)))
21 1cnd 10625 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2221addid1d 10829 . . . . . 6 (𝜑 → (1 + 0) = 1)
2322eqcomd 2804 . . . . 5 (𝜑 → 1 = (1 + 0))
2412nncnd 11641 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
259nncnd 11641 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
2624, 25npcand 10990 . . . . . 6 (𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁)
27 eqcom 2805 . . . . . . . . 9 (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = ((𝑁𝑀) + 𝑀))
2827a1i 11 . . . . . . . 8 (𝜑 → (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = ((𝑁𝑀) + 𝑀)))
2924, 25jca 515 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ))
30 subcl 10874 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁𝑀) ∈ ℂ)
3231, 25jca 515 . . . . . . . . . 10 (𝜑 → ((𝑁𝑀) ∈ ℂ ∧ 𝑀 ∈ ℂ))
33 addcom 10815 . . . . . . . . . 10 (((𝑁𝑀) ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)))
3432, 33syl 17 . . . . . . . . 9 (𝜑 → ((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)))
35 eqeq2 2810 . . . . . . . . 9 (((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)) → (𝑁 = ((𝑁𝑀) + 𝑀) ↔ 𝑁 = (𝑀 + (𝑁𝑀))))
3634, 35syl 17 . . . . . . . 8 (𝜑 → (𝑁 = ((𝑁𝑀) + 𝑀) ↔ 𝑁 = (𝑀 + (𝑁𝑀))))
3728, 36bitrd 282 . . . . . . 7 (𝜑 → (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = (𝑀 + (𝑁𝑀))))
3837pm5.74i 274 . . . . . 6 ((𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁) ↔ (𝜑𝑁 = (𝑀 + (𝑁𝑀))))
3926, 38mpbi 233 . . . . 5 (𝜑𝑁 = (𝑀 + (𝑁𝑀)))
408, 10, 11, 14, 19, 20, 23, 39fzadd2d 39265 . . . 4 (𝜑 → (𝑀 + 𝐾) ∈ (1...𝑁))
411, 7, 40rspcdva 3573 . . 3 (𝜑 → (𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)))
42 fz1ssnn 12933 . . . . . . 7 (1...𝑁) ⊆ ℕ
4342, 3pm3.2i 474 . . . . . 6 ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin)
44 lcmfnncl 15963 . . . . . 6 (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℕ)
4543, 44ax-mp 5 . . . . 5 (lcm‘(1...𝑁)) ∈ ℕ
4645a1i 11 . . . 4 (𝜑 → (lcm‘(1...𝑁)) ∈ ℕ)
47 elfznn0 12995 . . . . . 6 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ ℕ0)
4820, 47syl 17 . . . . 5 (𝜑𝐾 ∈ ℕ0)
49 nnnn0addcl 11915 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ)
509, 48, 49syl2anc 587 . . . 4 (𝜑 → (𝑀 + 𝐾) ∈ ℕ)
51 nndivdvds 15608 . . . 4 (((lcm‘(1...𝑁)) ∈ ℕ ∧ (𝑀 + 𝐾) ∈ ℕ) → ((𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)) ↔ ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ))
5246, 50, 51syl2anc 587 . . 3 (𝜑 → ((𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)) ↔ ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ))
5341, 52mpbid 235 . 2 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ)
5453nnzd 12074 1 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wss 3881   class class class wbr 5030  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cle 10665  cmin 10859   / cdiv 11286  cn 11625  0cn0 11885  cz 11969  ...cfz 12885  cdvds 15599  lcmclcmf 15923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252  df-dvds 15600  df-lcmf 15925
This theorem is referenced by:  lcmineqlem6  39322
  Copyright terms: Public domain W3C validator