Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem4 Structured version   Visualization version   GIF version

Theorem lcmineqlem4 42005
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. F is found in lcmineqlem6 42007. (Contributed by metakunt, 10-May-2024.)
Hypotheses
Ref Expression
lcmineqlem4.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem4.2 (𝜑𝑀 ∈ ℕ)
lcmineqlem4.3 (𝜑𝑀𝑁)
lcmineqlem4.4 (𝜑𝐾 ∈ (0...(𝑁𝑀)))
Assertion
Ref Expression
lcmineqlem4 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ)

Proof of Theorem lcmineqlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 breq1 5098 . . . 4 (𝑘 = (𝑀 + 𝐾) → (𝑘 ∥ (lcm‘(1...𝑁)) ↔ (𝑀 + 𝐾) ∥ (lcm‘(1...𝑁))))
2 fzssz 13447 . . . . . . 7 (1...𝑁) ⊆ ℤ
3 fzfi 13897 . . . . . . 7 (1...𝑁) ∈ Fin
42, 3pm3.2i 470 . . . . . 6 ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin)
54a1i 11 . . . . 5 (𝜑 → ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin))
6 dvdslcmf 16560 . . . . 5 (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin) → ∀𝑘 ∈ (1...𝑁)𝑘 ∥ (lcm‘(1...𝑁)))
75, 6syl 17 . . . 4 (𝜑 → ∀𝑘 ∈ (1...𝑁)𝑘 ∥ (lcm‘(1...𝑁)))
8 1zzd 12524 . . . . 5 (𝜑 → 1 ∈ ℤ)
9 lcmineqlem4.2 . . . . . 6 (𝜑𝑀 ∈ ℕ)
109nnzd 12516 . . . . 5 (𝜑𝑀 ∈ ℤ)
11 0zd 12501 . . . . 5 (𝜑 → 0 ∈ ℤ)
12 lcmineqlem4.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
1312nnzd 12516 . . . . . 6 (𝜑𝑁 ∈ ℤ)
1413, 10zsubcld 12603 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℤ)
159nnred 12161 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
1615leidd 11704 . . . . . 6 (𝜑𝑀𝑀)
17 fznn 13513 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 ∈ (1...𝑀) ↔ (𝑀 ∈ ℕ ∧ 𝑀𝑀)))
1810, 17syl 17 . . . . . 6 (𝜑 → (𝑀 ∈ (1...𝑀) ↔ (𝑀 ∈ ℕ ∧ 𝑀𝑀)))
199, 16, 18mpbir2and 713 . . . . 5 (𝜑𝑀 ∈ (1...𝑀))
20 lcmineqlem4.4 . . . . 5 (𝜑𝐾 ∈ (0...(𝑁𝑀)))
21 1cnd 11129 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2221addridd 11334 . . . . . 6 (𝜑 → (1 + 0) = 1)
2322eqcomd 2735 . . . . 5 (𝜑 → 1 = (1 + 0))
2412nncnd 12162 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
259nncnd 12162 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
2624, 25npcand 11497 . . . . . 6 (𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁)
27 eqcom 2736 . . . . . . . . 9 (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = ((𝑁𝑀) + 𝑀))
2827a1i 11 . . . . . . . 8 (𝜑 → (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = ((𝑁𝑀) + 𝑀)))
2924, 25jca 511 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ))
30 subcl 11380 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁𝑀) ∈ ℂ)
3231, 25jca 511 . . . . . . . . . 10 (𝜑 → ((𝑁𝑀) ∈ ℂ ∧ 𝑀 ∈ ℂ))
33 addcom 11320 . . . . . . . . . 10 (((𝑁𝑀) ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)))
3432, 33syl 17 . . . . . . . . 9 (𝜑 → ((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)))
35 eqeq2 2741 . . . . . . . . 9 (((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)) → (𝑁 = ((𝑁𝑀) + 𝑀) ↔ 𝑁 = (𝑀 + (𝑁𝑀))))
3634, 35syl 17 . . . . . . . 8 (𝜑 → (𝑁 = ((𝑁𝑀) + 𝑀) ↔ 𝑁 = (𝑀 + (𝑁𝑀))))
3728, 36bitrd 279 . . . . . . 7 (𝜑 → (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = (𝑀 + (𝑁𝑀))))
3837pm5.74i 271 . . . . . 6 ((𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁) ↔ (𝜑𝑁 = (𝑀 + (𝑁𝑀))))
3926, 38mpbi 230 . . . . 5 (𝜑𝑁 = (𝑀 + (𝑁𝑀)))
408, 10, 11, 14, 19, 20, 23, 39fzadd2d 41951 . . . 4 (𝜑 → (𝑀 + 𝐾) ∈ (1...𝑁))
411, 7, 40rspcdva 3580 . . 3 (𝜑 → (𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)))
42 fz1ssnn 13476 . . . . . . 7 (1...𝑁) ⊆ ℕ
4342, 3pm3.2i 470 . . . . . 6 ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin)
44 lcmfnncl 16558 . . . . . 6 (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℕ)
4543, 44ax-mp 5 . . . . 5 (lcm‘(1...𝑁)) ∈ ℕ
4645a1i 11 . . . 4 (𝜑 → (lcm‘(1...𝑁)) ∈ ℕ)
47 elfznn0 13541 . . . . . 6 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ ℕ0)
4820, 47syl 17 . . . . 5 (𝜑𝐾 ∈ ℕ0)
49 nnnn0addcl 12432 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ)
509, 48, 49syl2anc 584 . . . 4 (𝜑 → (𝑀 + 𝐾) ∈ ℕ)
51 nndivdvds 16190 . . . 4 (((lcm‘(1...𝑁)) ∈ ℕ ∧ (𝑀 + 𝐾) ∈ ℕ) → ((𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)) ↔ ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ))
5246, 50, 51syl2anc 584 . . 3 (𝜑 → ((𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)) ↔ ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ))
5341, 52mpbid 232 . 2 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ)
5453nnzd 12516 1 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3905   class class class wbr 5095  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  0cc0 11028  1c1 11029   + caddc 11031  cle 11169  cmin 11365   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  ...cfz 13428  cdvds 16181  lcmclcmf 16518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-prod 15829  df-dvds 16182  df-lcmf 16520
This theorem is referenced by:  lcmineqlem6  42007
  Copyright terms: Public domain W3C validator