Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem4 Structured version   Visualization version   GIF version

Theorem lcmineqlem4 40343
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. F is found in lcmineqlem6 40345. (Contributed by metakunt, 10-May-2024.)
Hypotheses
Ref Expression
lcmineqlem4.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem4.2 (𝜑𝑀 ∈ ℕ)
lcmineqlem4.3 (𝜑𝑀𝑁)
lcmineqlem4.4 (𝜑𝐾 ∈ (0...(𝑁𝑀)))
Assertion
Ref Expression
lcmineqlem4 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ)

Proof of Theorem lcmineqlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 breq1 5100 . . . 4 (𝑘 = (𝑀 + 𝐾) → (𝑘 ∥ (lcm‘(1...𝑁)) ↔ (𝑀 + 𝐾) ∥ (lcm‘(1...𝑁))))
2 fzssz 13364 . . . . . . 7 (1...𝑁) ⊆ ℤ
3 fzfi 13798 . . . . . . 7 (1...𝑁) ∈ Fin
42, 3pm3.2i 472 . . . . . 6 ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin)
54a1i 11 . . . . 5 (𝜑 → ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin))
6 dvdslcmf 16434 . . . . 5 (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin) → ∀𝑘 ∈ (1...𝑁)𝑘 ∥ (lcm‘(1...𝑁)))
75, 6syl 17 . . . 4 (𝜑 → ∀𝑘 ∈ (1...𝑁)𝑘 ∥ (lcm‘(1...𝑁)))
8 1zzd 12457 . . . . 5 (𝜑 → 1 ∈ ℤ)
9 lcmineqlem4.2 . . . . . 6 (𝜑𝑀 ∈ ℕ)
109nnzd 12531 . . . . 5 (𝜑𝑀 ∈ ℤ)
11 0zd 12437 . . . . 5 (𝜑 → 0 ∈ ℤ)
12 lcmineqlem4.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
1312nnzd 12531 . . . . . 6 (𝜑𝑁 ∈ ℤ)
1413, 10zsubcld 12537 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℤ)
159nnred 12094 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
1615leidd 11647 . . . . . 6 (𝜑𝑀𝑀)
17 fznn 13430 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 ∈ (1...𝑀) ↔ (𝑀 ∈ ℕ ∧ 𝑀𝑀)))
1810, 17syl 17 . . . . . 6 (𝜑 → (𝑀 ∈ (1...𝑀) ↔ (𝑀 ∈ ℕ ∧ 𝑀𝑀)))
199, 16, 18mpbir2and 711 . . . . 5 (𝜑𝑀 ∈ (1...𝑀))
20 lcmineqlem4.4 . . . . 5 (𝜑𝐾 ∈ (0...(𝑁𝑀)))
21 1cnd 11076 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2221addid1d 11281 . . . . . 6 (𝜑 → (1 + 0) = 1)
2322eqcomd 2743 . . . . 5 (𝜑 → 1 = (1 + 0))
2412nncnd 12095 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
259nncnd 12095 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
2624, 25npcand 11442 . . . . . 6 (𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁)
27 eqcom 2744 . . . . . . . . 9 (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = ((𝑁𝑀) + 𝑀))
2827a1i 11 . . . . . . . 8 (𝜑 → (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = ((𝑁𝑀) + 𝑀)))
2924, 25jca 513 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ))
30 subcl 11326 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁𝑀) ∈ ℂ)
3231, 25jca 513 . . . . . . . . . 10 (𝜑 → ((𝑁𝑀) ∈ ℂ ∧ 𝑀 ∈ ℂ))
33 addcom 11267 . . . . . . . . . 10 (((𝑁𝑀) ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)))
3432, 33syl 17 . . . . . . . . 9 (𝜑 → ((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)))
35 eqeq2 2749 . . . . . . . . 9 (((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)) → (𝑁 = ((𝑁𝑀) + 𝑀) ↔ 𝑁 = (𝑀 + (𝑁𝑀))))
3634, 35syl 17 . . . . . . . 8 (𝜑 → (𝑁 = ((𝑁𝑀) + 𝑀) ↔ 𝑁 = (𝑀 + (𝑁𝑀))))
3728, 36bitrd 279 . . . . . . 7 (𝜑 → (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = (𝑀 + (𝑁𝑀))))
3837pm5.74i 271 . . . . . 6 ((𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁) ↔ (𝜑𝑁 = (𝑀 + (𝑁𝑀))))
3926, 38mpbi 229 . . . . 5 (𝜑𝑁 = (𝑀 + (𝑁𝑀)))
408, 10, 11, 14, 19, 20, 23, 39fzadd2d 40289 . . . 4 (𝜑 → (𝑀 + 𝐾) ∈ (1...𝑁))
411, 7, 40rspcdva 3575 . . 3 (𝜑 → (𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)))
42 fz1ssnn 13393 . . . . . . 7 (1...𝑁) ⊆ ℕ
4342, 3pm3.2i 472 . . . . . 6 ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin)
44 lcmfnncl 16432 . . . . . 6 (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℕ)
4543, 44ax-mp 5 . . . . 5 (lcm‘(1...𝑁)) ∈ ℕ
4645a1i 11 . . . 4 (𝜑 → (lcm‘(1...𝑁)) ∈ ℕ)
47 elfznn0 13455 . . . . . 6 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ ℕ0)
4820, 47syl 17 . . . . 5 (𝜑𝐾 ∈ ℕ0)
49 nnnn0addcl 12369 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ)
509, 48, 49syl2anc 585 . . . 4 (𝜑 → (𝑀 + 𝐾) ∈ ℕ)
51 nndivdvds 16072 . . . 4 (((lcm‘(1...𝑁)) ∈ ℕ ∧ (𝑀 + 𝐾) ∈ ℕ) → ((𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)) ↔ ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ))
5246, 50, 51syl2anc 585 . . 3 (𝜑 → ((𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)) ↔ ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ))
5341, 52mpbid 231 . 2 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ)
5453nnzd 12531 1 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wral 3062  wss 3902   class class class wbr 5097  cfv 6484  (class class class)co 7342  Fincfn 8809  cc 10975  0cc0 10977  1c1 10978   + caddc 10980  cle 11116  cmin 11311   / cdiv 11738  cn 12079  0cn0 12339  cz 12425  ...cfz 13345  cdvds 16063  lcmclcmf 16392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-inf2 9503  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-sup 9304  df-inf 9305  df-oi 9372  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-n0 12340  df-z 12426  df-uz 12689  df-rp 12837  df-fz 13346  df-fzo 13489  df-seq 13828  df-exp 13889  df-hash 14151  df-cj 14910  df-re 14911  df-im 14912  df-sqrt 15046  df-abs 15047  df-clim 15297  df-prod 15716  df-dvds 16064  df-lcmf 16394
This theorem is referenced by:  lcmineqlem6  40345
  Copyright terms: Public domain W3C validator