Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem4 Structured version   Visualization version   GIF version

Theorem lcmineqlem4 42027
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. F is found in lcmineqlem6 42029. (Contributed by metakunt, 10-May-2024.)
Hypotheses
Ref Expression
lcmineqlem4.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem4.2 (𝜑𝑀 ∈ ℕ)
lcmineqlem4.3 (𝜑𝑀𝑁)
lcmineqlem4.4 (𝜑𝐾 ∈ (0...(𝑁𝑀)))
Assertion
Ref Expression
lcmineqlem4 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ)

Proof of Theorem lcmineqlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 breq1 5113 . . . 4 (𝑘 = (𝑀 + 𝐾) → (𝑘 ∥ (lcm‘(1...𝑁)) ↔ (𝑀 + 𝐾) ∥ (lcm‘(1...𝑁))))
2 fzssz 13494 . . . . . . 7 (1...𝑁) ⊆ ℤ
3 fzfi 13944 . . . . . . 7 (1...𝑁) ∈ Fin
42, 3pm3.2i 470 . . . . . 6 ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin)
54a1i 11 . . . . 5 (𝜑 → ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin))
6 dvdslcmf 16608 . . . . 5 (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin) → ∀𝑘 ∈ (1...𝑁)𝑘 ∥ (lcm‘(1...𝑁)))
75, 6syl 17 . . . 4 (𝜑 → ∀𝑘 ∈ (1...𝑁)𝑘 ∥ (lcm‘(1...𝑁)))
8 1zzd 12571 . . . . 5 (𝜑 → 1 ∈ ℤ)
9 lcmineqlem4.2 . . . . . 6 (𝜑𝑀 ∈ ℕ)
109nnzd 12563 . . . . 5 (𝜑𝑀 ∈ ℤ)
11 0zd 12548 . . . . 5 (𝜑 → 0 ∈ ℤ)
12 lcmineqlem4.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
1312nnzd 12563 . . . . . 6 (𝜑𝑁 ∈ ℤ)
1413, 10zsubcld 12650 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℤ)
159nnred 12208 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
1615leidd 11751 . . . . . 6 (𝜑𝑀𝑀)
17 fznn 13560 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 ∈ (1...𝑀) ↔ (𝑀 ∈ ℕ ∧ 𝑀𝑀)))
1810, 17syl 17 . . . . . 6 (𝜑 → (𝑀 ∈ (1...𝑀) ↔ (𝑀 ∈ ℕ ∧ 𝑀𝑀)))
199, 16, 18mpbir2and 713 . . . . 5 (𝜑𝑀 ∈ (1...𝑀))
20 lcmineqlem4.4 . . . . 5 (𝜑𝐾 ∈ (0...(𝑁𝑀)))
21 1cnd 11176 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2221addridd 11381 . . . . . 6 (𝜑 → (1 + 0) = 1)
2322eqcomd 2736 . . . . 5 (𝜑 → 1 = (1 + 0))
2412nncnd 12209 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
259nncnd 12209 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
2624, 25npcand 11544 . . . . . 6 (𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁)
27 eqcom 2737 . . . . . . . . 9 (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = ((𝑁𝑀) + 𝑀))
2827a1i 11 . . . . . . . 8 (𝜑 → (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = ((𝑁𝑀) + 𝑀)))
2924, 25jca 511 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ))
30 subcl 11427 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁𝑀) ∈ ℂ)
3231, 25jca 511 . . . . . . . . . 10 (𝜑 → ((𝑁𝑀) ∈ ℂ ∧ 𝑀 ∈ ℂ))
33 addcom 11367 . . . . . . . . . 10 (((𝑁𝑀) ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)))
3432, 33syl 17 . . . . . . . . 9 (𝜑 → ((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)))
35 eqeq2 2742 . . . . . . . . 9 (((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)) → (𝑁 = ((𝑁𝑀) + 𝑀) ↔ 𝑁 = (𝑀 + (𝑁𝑀))))
3634, 35syl 17 . . . . . . . 8 (𝜑 → (𝑁 = ((𝑁𝑀) + 𝑀) ↔ 𝑁 = (𝑀 + (𝑁𝑀))))
3728, 36bitrd 279 . . . . . . 7 (𝜑 → (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = (𝑀 + (𝑁𝑀))))
3837pm5.74i 271 . . . . . 6 ((𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁) ↔ (𝜑𝑁 = (𝑀 + (𝑁𝑀))))
3926, 38mpbi 230 . . . . 5 (𝜑𝑁 = (𝑀 + (𝑁𝑀)))
408, 10, 11, 14, 19, 20, 23, 39fzadd2d 41973 . . . 4 (𝜑 → (𝑀 + 𝐾) ∈ (1...𝑁))
411, 7, 40rspcdva 3592 . . 3 (𝜑 → (𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)))
42 fz1ssnn 13523 . . . . . . 7 (1...𝑁) ⊆ ℕ
4342, 3pm3.2i 470 . . . . . 6 ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin)
44 lcmfnncl 16606 . . . . . 6 (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℕ)
4543, 44ax-mp 5 . . . . 5 (lcm‘(1...𝑁)) ∈ ℕ
4645a1i 11 . . . 4 (𝜑 → (lcm‘(1...𝑁)) ∈ ℕ)
47 elfznn0 13588 . . . . . 6 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ ℕ0)
4820, 47syl 17 . . . . 5 (𝜑𝐾 ∈ ℕ0)
49 nnnn0addcl 12479 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ)
509, 48, 49syl2anc 584 . . . 4 (𝜑 → (𝑀 + 𝐾) ∈ ℕ)
51 nndivdvds 16238 . . . 4 (((lcm‘(1...𝑁)) ∈ ℕ ∧ (𝑀 + 𝐾) ∈ ℕ) → ((𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)) ↔ ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ))
5246, 50, 51syl2anc 584 . . 3 (𝜑 → ((𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)) ↔ ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ))
5341, 52mpbid 232 . 2 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ)
5453nnzd 12563 1 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  0cc0 11075  1c1 11076   + caddc 11078  cle 11216  cmin 11412   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  ...cfz 13475  cdvds 16229  lcmclcmf 16566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877  df-dvds 16230  df-lcmf 16568
This theorem is referenced by:  lcmineqlem6  42029
  Copyright terms: Public domain W3C validator