Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem4 Structured version   Visualization version   GIF version

Theorem lcmineqlem4 39584
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. F is found in lcmineqlem6 39586. (Contributed by metakunt, 10-May-2024.)
Hypotheses
Ref Expression
lcmineqlem4.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem4.2 (𝜑𝑀 ∈ ℕ)
lcmineqlem4.3 (𝜑𝑀𝑁)
lcmineqlem4.4 (𝜑𝐾 ∈ (0...(𝑁𝑀)))
Assertion
Ref Expression
lcmineqlem4 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ)

Proof of Theorem lcmineqlem4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 breq1 5028 . . . 4 (𝑘 = (𝑀 + 𝐾) → (𝑘 ∥ (lcm‘(1...𝑁)) ↔ (𝑀 + 𝐾) ∥ (lcm‘(1...𝑁))))
2 fzssz 12943 . . . . . . 7 (1...𝑁) ⊆ ℤ
3 fzfi 13374 . . . . . . 7 (1...𝑁) ∈ Fin
42, 3pm3.2i 475 . . . . . 6 ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin)
54a1i 11 . . . . 5 (𝜑 → ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin))
6 dvdslcmf 16012 . . . . 5 (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin) → ∀𝑘 ∈ (1...𝑁)𝑘 ∥ (lcm‘(1...𝑁)))
75, 6syl 17 . . . 4 (𝜑 → ∀𝑘 ∈ (1...𝑁)𝑘 ∥ (lcm‘(1...𝑁)))
8 1zzd 12037 . . . . 5 (𝜑 → 1 ∈ ℤ)
9 lcmineqlem4.2 . . . . . 6 (𝜑𝑀 ∈ ℕ)
109nnzd 12110 . . . . 5 (𝜑𝑀 ∈ ℤ)
11 0zd 12017 . . . . 5 (𝜑 → 0 ∈ ℤ)
12 lcmineqlem4.1 . . . . . . 7 (𝜑𝑁 ∈ ℕ)
1312nnzd 12110 . . . . . 6 (𝜑𝑁 ∈ ℤ)
1413, 10zsubcld 12116 . . . . 5 (𝜑 → (𝑁𝑀) ∈ ℤ)
159nnred 11674 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
1615leidd 11229 . . . . . 6 (𝜑𝑀𝑀)
17 fznn 13009 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 ∈ (1...𝑀) ↔ (𝑀 ∈ ℕ ∧ 𝑀𝑀)))
1810, 17syl 17 . . . . . 6 (𝜑 → (𝑀 ∈ (1...𝑀) ↔ (𝑀 ∈ ℕ ∧ 𝑀𝑀)))
199, 16, 18mpbir2and 713 . . . . 5 (𝜑𝑀 ∈ (1...𝑀))
20 lcmineqlem4.4 . . . . 5 (𝜑𝐾 ∈ (0...(𝑁𝑀)))
21 1cnd 10659 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2221addid1d 10863 . . . . . 6 (𝜑 → (1 + 0) = 1)
2322eqcomd 2765 . . . . 5 (𝜑 → 1 = (1 + 0))
2412nncnd 11675 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
259nncnd 11675 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
2624, 25npcand 11024 . . . . . 6 (𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁)
27 eqcom 2766 . . . . . . . . 9 (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = ((𝑁𝑀) + 𝑀))
2827a1i 11 . . . . . . . 8 (𝜑 → (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = ((𝑁𝑀) + 𝑀)))
2924, 25jca 516 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ))
30 subcl 10908 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑁𝑀) ∈ ℂ)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁𝑀) ∈ ℂ)
3231, 25jca 516 . . . . . . . . . 10 (𝜑 → ((𝑁𝑀) ∈ ℂ ∧ 𝑀 ∈ ℂ))
33 addcom 10849 . . . . . . . . . 10 (((𝑁𝑀) ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)))
3432, 33syl 17 . . . . . . . . 9 (𝜑 → ((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)))
35 eqeq2 2771 . . . . . . . . 9 (((𝑁𝑀) + 𝑀) = (𝑀 + (𝑁𝑀)) → (𝑁 = ((𝑁𝑀) + 𝑀) ↔ 𝑁 = (𝑀 + (𝑁𝑀))))
3634, 35syl 17 . . . . . . . 8 (𝜑 → (𝑁 = ((𝑁𝑀) + 𝑀) ↔ 𝑁 = (𝑀 + (𝑁𝑀))))
3728, 36bitrd 282 . . . . . . 7 (𝜑 → (((𝑁𝑀) + 𝑀) = 𝑁𝑁 = (𝑀 + (𝑁𝑀))))
3837pm5.74i 274 . . . . . 6 ((𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁) ↔ (𝜑𝑁 = (𝑀 + (𝑁𝑀))))
3926, 38mpbi 233 . . . . 5 (𝜑𝑁 = (𝑀 + (𝑁𝑀)))
408, 10, 11, 14, 19, 20, 23, 39fzadd2d 39530 . . . 4 (𝜑 → (𝑀 + 𝐾) ∈ (1...𝑁))
411, 7, 40rspcdva 3541 . . 3 (𝜑 → (𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)))
42 fz1ssnn 12972 . . . . . . 7 (1...𝑁) ⊆ ℕ
4342, 3pm3.2i 475 . . . . . 6 ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin)
44 lcmfnncl 16010 . . . . . 6 (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℕ)
4543, 44ax-mp 5 . . . . 5 (lcm‘(1...𝑁)) ∈ ℕ
4645a1i 11 . . . 4 (𝜑 → (lcm‘(1...𝑁)) ∈ ℕ)
47 elfznn0 13034 . . . . . 6 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ ℕ0)
4820, 47syl 17 . . . . 5 (𝜑𝐾 ∈ ℕ0)
49 nnnn0addcl 11949 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0) → (𝑀 + 𝐾) ∈ ℕ)
509, 48, 49syl2anc 588 . . . 4 (𝜑 → (𝑀 + 𝐾) ∈ ℕ)
51 nndivdvds 15649 . . . 4 (((lcm‘(1...𝑁)) ∈ ℕ ∧ (𝑀 + 𝐾) ∈ ℕ) → ((𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)) ↔ ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ))
5246, 50, 51syl2anc 588 . . 3 (𝜑 → ((𝑀 + 𝐾) ∥ (lcm‘(1...𝑁)) ↔ ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ))
5341, 52mpbid 235 . 2 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℕ)
5453nnzd 12110 1 (𝜑 → ((lcm‘(1...𝑁)) / (𝑀 + 𝐾)) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wral 3068  wss 3854   class class class wbr 5025  cfv 6328  (class class class)co 7143  Fincfn 8520  cc 10558  0cc0 10560  1c1 10561   + caddc 10563  cle 10699  cmin 10893   / cdiv 11320  cn 11659  0cn0 11919  cz 12005  ...cfz 12924  cdvds 15640  lcmclcmf 15970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-pre-sup 10638
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-sup 8924  df-inf 8925  df-oi 8992  df-card 9386  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-n0 11920  df-z 12006  df-uz 12268  df-rp 12416  df-fz 12925  df-fzo 13068  df-seq 13404  df-exp 13465  df-hash 13726  df-cj 14491  df-re 14492  df-im 14493  df-sqrt 14627  df-abs 14628  df-clim 14878  df-prod 15293  df-dvds 15641  df-lcmf 15972
This theorem is referenced by:  lcmineqlem6  39586
  Copyright terms: Public domain W3C validator