| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chtleppi | Structured version Visualization version GIF version | ||
| Description: Upper bound on the θ function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
| Ref | Expression |
|---|---|
| chtleppi | ⊢ (𝐴 ∈ ℝ+ → (θ‘𝐴) ≤ ((π‘𝐴) · (log‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 12966 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | ppifi 27022 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((0[,]𝐴) ∩ ℙ) ∈ Fin) |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) | |
| 5 | 4 | elin2d 4170 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ) |
| 6 | prmnn 16650 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ) |
| 8 | 7 | nnrpd 12999 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+) |
| 9 | 8 | relogcld 26538 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ) |
| 10 | relogcl 26490 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ) |
| 12 | 4 | elin1d 4169 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (0[,]𝐴)) |
| 13 | 0re 11182 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 14 | elicc2 13378 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴))) | |
| 15 | 13, 1, 14 | sylancr 587 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ+ → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴))) |
| 16 | 15 | biimpa 476 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴)) |
| 17 | 12, 16 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴)) |
| 18 | 17 | simp3d 1144 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ≤ 𝐴) |
| 19 | 8 | reeflogd 26539 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (exp‘(log‘𝑝)) = 𝑝) |
| 20 | reeflog 26495 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴) | |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (exp‘(log‘𝐴)) = 𝐴) |
| 22 | 18, 19, 21 | 3brtr4d 5141 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (exp‘(log‘𝑝)) ≤ (exp‘(log‘𝐴))) |
| 23 | efle 16092 | . . . . 5 ⊢ (((log‘𝑝) ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → ((log‘𝑝) ≤ (log‘𝐴) ↔ (exp‘(log‘𝑝)) ≤ (exp‘(log‘𝐴)))) | |
| 24 | 9, 11, 23 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) ≤ (log‘𝐴) ↔ (exp‘(log‘𝑝)) ≤ (exp‘(log‘𝐴)))) |
| 25 | 22, 24 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ≤ (log‘𝐴)) |
| 26 | 3, 9, 11, 25 | fsumle 15771 | . 2 ⊢ (𝐴 ∈ ℝ+ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝) ≤ Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝐴)) |
| 27 | chtval 27026 | . . 3 ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) | |
| 28 | 1, 27 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
| 29 | ppival 27043 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) | |
| 30 | 1, 29 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) |
| 31 | 30 | oveq1d 7404 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((π‘𝐴) · (log‘𝐴)) = ((♯‘((0[,]𝐴) ∩ ℙ)) · (log‘𝐴))) |
| 32 | 10 | recnd 11208 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ) |
| 33 | fsumconst 15762 | . . . 4 ⊢ ((((0[,]𝐴) ∩ ℙ) ∈ Fin ∧ (log‘𝐴) ∈ ℂ) → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝐴) = ((♯‘((0[,]𝐴) ∩ ℙ)) · (log‘𝐴))) | |
| 34 | 3, 32, 33 | syl2anc 584 | . . 3 ⊢ (𝐴 ∈ ℝ+ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝐴) = ((♯‘((0[,]𝐴) ∩ ℙ)) · (log‘𝐴))) |
| 35 | 31, 34 | eqtr4d 2768 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((π‘𝐴) · (log‘𝐴)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝐴)) |
| 36 | 26, 28, 35 | 3brtr4d 5141 | 1 ⊢ (𝐴 ∈ ℝ+ → (θ‘𝐴) ≤ ((π‘𝐴) · (log‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3915 class class class wbr 5109 ‘cfv 6513 (class class class)co 7389 Fincfn 8920 ℂcc 11072 ℝcr 11073 0cc0 11074 · cmul 11079 ≤ cle 11215 ℕcn 12187 ℝ+crp 12957 [,]cicc 13315 ♯chash 14301 Σcsu 15658 expce 16033 ℙcprime 16647 logclog 26469 θccht 27007 πcppi 27010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-fi 9368 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ioo 13316 df-ioc 13317 df-ico 13318 df-icc 13319 df-fz 13475 df-fzo 13622 df-fl 13760 df-mod 13838 df-seq 13973 df-exp 14033 df-fac 14245 df-bc 14274 df-hash 14302 df-shft 15039 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-limsup 15443 df-clim 15460 df-rlim 15461 df-sum 15659 df-ef 16039 df-sin 16041 df-cos 16042 df-pi 16044 df-dvds 16229 df-prm 16648 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-haus 23208 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-tms 24216 df-cncf 24777 df-limc 25773 df-dv 25774 df-log 26471 df-cht 27013 df-ppi 27016 |
| This theorem is referenced by: chtppilim 27392 |
| Copyright terms: Public domain | W3C validator |