![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > chtleppi | Structured version Visualization version GIF version |
Description: Upper bound on the θ function. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
chtleppi | ⊢ (𝐴 ∈ ℝ+ → (θ‘𝐴) ≤ ((π‘𝐴) · (log‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpre 13036 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
2 | ppifi 27134 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((0[,]𝐴) ∩ ℙ) ∈ Fin) |
4 | simpr 483 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) | |
5 | 4 | elin2d 4200 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℙ) |
6 | prmnn 16675 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℕ) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℕ) |
8 | 7 | nnrpd 13068 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ ℝ+) |
9 | 8 | relogcld 26650 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ∈ ℝ) |
10 | relogcl 26602 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
11 | 10 | adantr 479 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝐴) ∈ ℝ) |
12 | 4 | elin1d 4199 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ∈ (0[,]𝐴)) |
13 | 0re 11266 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
14 | elicc2 13443 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴))) | |
15 | 13, 1, 14 | sylancr 585 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ+ → (𝑝 ∈ (0[,]𝐴) ↔ (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴))) |
16 | 15 | biimpa 475 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ (0[,]𝐴)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴)) |
17 | 12, 16 | syldan 589 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴)) |
18 | 17 | simp3d 1141 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → 𝑝 ≤ 𝐴) |
19 | 8 | reeflogd 26651 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (exp‘(log‘𝑝)) = 𝑝) |
20 | reeflog 26607 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (exp‘(log‘𝐴)) = 𝐴) | |
21 | 20 | adantr 479 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (exp‘(log‘𝐴)) = 𝐴) |
22 | 18, 19, 21 | 3brtr4d 5185 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (exp‘(log‘𝑝)) ≤ (exp‘(log‘𝐴))) |
23 | efle 16120 | . . . . 5 ⊢ (((log‘𝑝) ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → ((log‘𝑝) ≤ (log‘𝐴) ↔ (exp‘(log‘𝑝)) ≤ (exp‘(log‘𝐴)))) | |
24 | 9, 11, 23 | syl2anc 582 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → ((log‘𝑝) ≤ (log‘𝐴) ↔ (exp‘(log‘𝑝)) ≤ (exp‘(log‘𝐴)))) |
25 | 22, 24 | mpbird 256 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑝 ∈ ((0[,]𝐴) ∩ ℙ)) → (log‘𝑝) ≤ (log‘𝐴)) |
26 | 3, 9, 11, 25 | fsumle 15803 | . 2 ⊢ (𝐴 ∈ ℝ+ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝) ≤ Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝐴)) |
27 | chtval 27138 | . . 3 ⊢ (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) | |
28 | 1, 27 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (θ‘𝐴) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑝)) |
29 | ppival 27155 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) | |
30 | 1, 29 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) |
31 | 30 | oveq1d 7439 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((π‘𝐴) · (log‘𝐴)) = ((♯‘((0[,]𝐴) ∩ ℙ)) · (log‘𝐴))) |
32 | 10 | recnd 11292 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ) |
33 | fsumconst 15794 | . . . 4 ⊢ ((((0[,]𝐴) ∩ ℙ) ∈ Fin ∧ (log‘𝐴) ∈ ℂ) → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝐴) = ((♯‘((0[,]𝐴) ∩ ℙ)) · (log‘𝐴))) | |
34 | 3, 32, 33 | syl2anc 582 | . . 3 ⊢ (𝐴 ∈ ℝ+ → Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝐴) = ((♯‘((0[,]𝐴) ∩ ℙ)) · (log‘𝐴))) |
35 | 31, 34 | eqtr4d 2769 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((π‘𝐴) · (log‘𝐴)) = Σ𝑝 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝐴)) |
36 | 26, 28, 35 | 3brtr4d 5185 | 1 ⊢ (𝐴 ∈ ℝ+ → (θ‘𝐴) ≤ ((π‘𝐴) · (log‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 Fincfn 8974 ℂcc 11156 ℝcr 11157 0cc0 11158 · cmul 11163 ≤ cle 11299 ℕcn 12264 ℝ+crp 13028 [,]cicc 13381 ♯chash 14347 Σcsu 15690 expce 16063 ℙcprime 16672 logclog 26581 θccht 27119 πcppi 27122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-er 8734 df-map 8857 df-pm 8858 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-fi 9454 df-sup 9485 df-inf 9486 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-q 12985 df-rp 13029 df-xneg 13146 df-xadd 13147 df-xmul 13148 df-ioo 13382 df-ioc 13383 df-ico 13384 df-icc 13385 df-fz 13539 df-fzo 13682 df-fl 13812 df-mod 13890 df-seq 14022 df-exp 14082 df-fac 14291 df-bc 14320 df-hash 14348 df-shft 15072 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-limsup 15473 df-clim 15490 df-rlim 15491 df-sum 15691 df-ef 16069 df-sin 16071 df-cos 16072 df-pi 16074 df-dvds 16257 df-prm 16673 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-hom 17290 df-cco 17291 df-rest 17437 df-topn 17438 df-0g 17456 df-gsum 17457 df-topgen 17458 df-pt 17459 df-prds 17462 df-xrs 17517 df-qtop 17522 df-imas 17523 df-xps 17525 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-mulg 19062 df-cntz 19311 df-cmn 19780 df-psmet 21335 df-xmet 21336 df-met 21337 df-bl 21338 df-mopn 21339 df-fbas 21340 df-fg 21341 df-cnfld 21344 df-top 22887 df-topon 22904 df-topsp 22926 df-bases 22940 df-cld 23014 df-ntr 23015 df-cls 23016 df-nei 23093 df-lp 23131 df-perf 23132 df-cn 23222 df-cnp 23223 df-haus 23310 df-tx 23557 df-hmeo 23750 df-fil 23841 df-fm 23933 df-flim 23934 df-flf 23935 df-xms 24317 df-ms 24318 df-tms 24319 df-cncf 24889 df-limc 25886 df-dv 25887 df-log 26583 df-cht 27125 df-ppi 27128 |
This theorem is referenced by: chtppilim 27504 |
Copyright terms: Public domain | W3C validator |