MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiwordi Structured version   Visualization version   GIF version

Theorem ppiwordi 27105
Description: The prime-counting function π is weakly increasing. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
ppiwordi ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (π𝐴) ≤ (π𝐵))

Proof of Theorem ppiwordi
StepHypRef Expression
1 simp2 1137 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
2 ppifi 27049 . . . . 5 (𝐵 ∈ ℝ → ((0[,]𝐵) ∩ ℙ) ∈ Fin)
31, 2syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((0[,]𝐵) ∩ ℙ) ∈ Fin)
4 0red 11153 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ∈ ℝ)
5 0le0 12263 . . . . . . 7 0 ≤ 0
65a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ≤ 0)
7 simp3 1138 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
8 iccss 13351 . . . . . 6 (((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 0 ∧ 𝐴𝐵)) → (0[,]𝐴) ⊆ (0[,]𝐵))
94, 1, 6, 7, 8syl22anc 838 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (0[,]𝐴) ⊆ (0[,]𝐵))
109ssrind 4203 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((0[,]𝐴) ∩ ℙ) ⊆ ((0[,]𝐵) ∩ ℙ))
11 ssdomg 8948 . . . 4 (((0[,]𝐵) ∩ ℙ) ∈ Fin → (((0[,]𝐴) ∩ ℙ) ⊆ ((0[,]𝐵) ∩ ℙ) → ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ)))
123, 10, 11sylc 65 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ))
13 ppifi 27049 . . . . 5 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
14133ad2ant1 1133 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
15 hashdom 14320 . . . 4 ((((0[,]𝐴) ∩ ℙ) ∈ Fin ∧ ((0[,]𝐵) ∩ ℙ) ∈ Fin) → ((♯‘((0[,]𝐴) ∩ ℙ)) ≤ (♯‘((0[,]𝐵) ∩ ℙ)) ↔ ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ)))
1614, 3, 15syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((♯‘((0[,]𝐴) ∩ ℙ)) ≤ (♯‘((0[,]𝐵) ∩ ℙ)) ↔ ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ)))
1712, 16mpbird 257 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (♯‘((0[,]𝐴) ∩ ℙ)) ≤ (♯‘((0[,]𝐵) ∩ ℙ)))
18 ppival 27070 . . 3 (𝐴 ∈ ℝ → (π𝐴) = (♯‘((0[,]𝐴) ∩ ℙ)))
19183ad2ant1 1133 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (π𝐴) = (♯‘((0[,]𝐴) ∩ ℙ)))
20 ppival 27070 . . 3 (𝐵 ∈ ℝ → (π𝐵) = (♯‘((0[,]𝐵) ∩ ℙ)))
211, 20syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (π𝐵) = (♯‘((0[,]𝐵) ∩ ℙ)))
2217, 19, 213brtr4d 5134 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (π𝐴) ≤ (π𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  cin 3910  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  cdom 8893  Fincfn 8895  cr 11043  0cc0 11044  cle 11185  [,]cicc 13285  chash 14271  cprime 16617  πcppi 27037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-icc 13289  df-fz 13445  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-prm 16618  df-ppi 27043
This theorem is referenced by:  ppinncl  27117  ppieq0  27119  ppiub  27148  chebbnd1lem1  27413  chebbnd1lem3  27415
  Copyright terms: Public domain W3C validator