![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ppiwordi | Structured version Visualization version GIF version |
Description: The prime-counting function π is weakly increasing. (Contributed by Mario Carneiro, 19-Sep-2014.) |
Ref | Expression |
---|---|
ppiwordi | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (π‘𝐴) ≤ (π‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) | |
2 | ppifi 27054 | . . . . 5 ⊢ (𝐵 ∈ ℝ → ((0[,]𝐵) ∩ ℙ) ∈ Fin) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((0[,]𝐵) ∩ ℙ) ∈ Fin) |
4 | 0red 11245 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 0 ∈ ℝ) | |
5 | 0le0 12341 | . . . . . . 7 ⊢ 0 ≤ 0 | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 0 ≤ 0) |
7 | simp3 1135 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
8 | iccss 13422 | . . . . . 6 ⊢ (((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 0 ∧ 𝐴 ≤ 𝐵)) → (0[,]𝐴) ⊆ (0[,]𝐵)) | |
9 | 4, 1, 6, 7, 8 | syl22anc 837 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (0[,]𝐴) ⊆ (0[,]𝐵)) |
10 | 9 | ssrind 4228 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((0[,]𝐴) ∩ ℙ) ⊆ ((0[,]𝐵) ∩ ℙ)) |
11 | ssdomg 9017 | . . . 4 ⊢ (((0[,]𝐵) ∩ ℙ) ∈ Fin → (((0[,]𝐴) ∩ ℙ) ⊆ ((0[,]𝐵) ∩ ℙ) → ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ))) | |
12 | 3, 10, 11 | sylc 65 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ)) |
13 | ppifi 27054 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin) | |
14 | 13 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((0[,]𝐴) ∩ ℙ) ∈ Fin) |
15 | hashdom 14368 | . . . 4 ⊢ ((((0[,]𝐴) ∩ ℙ) ∈ Fin ∧ ((0[,]𝐵) ∩ ℙ) ∈ Fin) → ((♯‘((0[,]𝐴) ∩ ℙ)) ≤ (♯‘((0[,]𝐵) ∩ ℙ)) ↔ ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ))) | |
16 | 14, 3, 15 | syl2anc 582 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → ((♯‘((0[,]𝐴) ∩ ℙ)) ≤ (♯‘((0[,]𝐵) ∩ ℙ)) ↔ ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ))) |
17 | 12, 16 | mpbird 256 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (♯‘((0[,]𝐴) ∩ ℙ)) ≤ (♯‘((0[,]𝐵) ∩ ℙ))) |
18 | ppival 27075 | . . 3 ⊢ (𝐴 ∈ ℝ → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) | |
19 | 18 | 3ad2ant1 1130 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (π‘𝐴) = (♯‘((0[,]𝐴) ∩ ℙ))) |
20 | ppival 27075 | . . 3 ⊢ (𝐵 ∈ ℝ → (π‘𝐵) = (♯‘((0[,]𝐵) ∩ ℙ))) | |
21 | 1, 20 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (π‘𝐵) = (♯‘((0[,]𝐵) ∩ ℙ))) |
22 | 17, 19, 21 | 3brtr4d 5173 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (π‘𝐴) ≤ (π‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∩ cin 3938 ⊆ wss 3939 class class class wbr 5141 ‘cfv 6541 (class class class)co 7414 ≼ cdom 8958 Fincfn 8960 ℝcr 11135 0cc0 11136 ≤ cle 11277 [,]cicc 13357 ♯chash 14319 ℙcprime 16639 πcppi 27042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-oadd 8487 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-inf 9464 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-xnn0 12573 df-z 12587 df-uz 12851 df-rp 13005 df-icc 13361 df-fz 13515 df-fl 13787 df-seq 13997 df-exp 14057 df-hash 14320 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-dvds 16229 df-prm 16640 df-ppi 27048 |
This theorem is referenced by: ppinncl 27122 ppieq0 27124 ppiub 27153 chebbnd1lem1 27418 chebbnd1lem3 27420 |
Copyright terms: Public domain | W3C validator |