MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiwordi Structured version   Visualization version   GIF version

Theorem ppiwordi 25739
Description: The prime-counting function π is weakly increasing. (Contributed by Mario Carneiro, 19-Sep-2014.)
Assertion
Ref Expression
ppiwordi ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (π𝐴) ≤ (π𝐵))

Proof of Theorem ppiwordi
StepHypRef Expression
1 simp2 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 ∈ ℝ)
2 ppifi 25683 . . . . 5 (𝐵 ∈ ℝ → ((0[,]𝐵) ∩ ℙ) ∈ Fin)
31, 2syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((0[,]𝐵) ∩ ℙ) ∈ Fin)
4 0red 10644 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ∈ ℝ)
5 0le0 11739 . . . . . . 7 0 ≤ 0
65a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 0 ≤ 0)
7 simp3 1134 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴𝐵)
8 iccss 12805 . . . . . 6 (((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 0 ∧ 𝐴𝐵)) → (0[,]𝐴) ⊆ (0[,]𝐵))
94, 1, 6, 7, 8syl22anc 836 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (0[,]𝐴) ⊆ (0[,]𝐵))
109ssrind 4212 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((0[,]𝐴) ∩ ℙ) ⊆ ((0[,]𝐵) ∩ ℙ))
11 ssdomg 8555 . . . 4 (((0[,]𝐵) ∩ ℙ) ∈ Fin → (((0[,]𝐴) ∩ ℙ) ⊆ ((0[,]𝐵) ∩ ℙ) → ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ)))
123, 10, 11sylc 65 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ))
13 ppifi 25683 . . . . 5 (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
14133ad2ant1 1129 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((0[,]𝐴) ∩ ℙ) ∈ Fin)
15 hashdom 13741 . . . 4 ((((0[,]𝐴) ∩ ℙ) ∈ Fin ∧ ((0[,]𝐵) ∩ ℙ) ∈ Fin) → ((♯‘((0[,]𝐴) ∩ ℙ)) ≤ (♯‘((0[,]𝐵) ∩ ℙ)) ↔ ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ)))
1614, 3, 15syl2anc 586 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → ((♯‘((0[,]𝐴) ∩ ℙ)) ≤ (♯‘((0[,]𝐵) ∩ ℙ)) ↔ ((0[,]𝐴) ∩ ℙ) ≼ ((0[,]𝐵) ∩ ℙ)))
1712, 16mpbird 259 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (♯‘((0[,]𝐴) ∩ ℙ)) ≤ (♯‘((0[,]𝐵) ∩ ℙ)))
18 ppival 25704 . . 3 (𝐴 ∈ ℝ → (π𝐴) = (♯‘((0[,]𝐴) ∩ ℙ)))
19183ad2ant1 1129 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (π𝐴) = (♯‘((0[,]𝐴) ∩ ℙ)))
20 ppival 25704 . . 3 (𝐵 ∈ ℝ → (π𝐵) = (♯‘((0[,]𝐵) ∩ ℙ)))
211, 20syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (π𝐵) = (♯‘((0[,]𝐵) ∩ ℙ)))
2217, 19, 213brtr4d 5098 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (π𝐴) ≤ (π𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114  cin 3935  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156  cdom 8507  Fincfn 8509  cr 10536  0cc0 10537  cle 10676  [,]cicc 12742  chash 13691  cprime 16015  πcppi 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-rp 12391  df-icc 12746  df-fz 12894  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-prm 16016  df-ppi 25677
This theorem is referenced by:  ppinncl  25751  ppieq0  25753  ppiub  25780  chebbnd1lem1  26045  chebbnd1lem3  26047
  Copyright terms: Public domain W3C validator