MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknlbonbgr1 Structured version   Visualization version   GIF version

Theorem clwwlknlbonbgr1 28431
Description: The last but one vertex in a closed walk is a neighbor of the first vertex of the closed walk. (Contributed by AV, 17-Feb-2022.)
Assertion
Ref Expression
clwwlknlbonbgr1 ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑊‘0)))

Proof of Theorem clwwlknlbonbgr1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2733 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
31, 2clwwlknp 28429 . . . 4 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
4 lsw 14295 . . . . . . . . . 10 (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
5 fvoveq1 7318 . . . . . . . . . 10 ((♯‘𝑊) = 𝑁 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1)))
64, 5sylan9eq 2793 . . . . . . . . 9 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (lastS‘𝑊) = (𝑊‘(𝑁 − 1)))
76preq1d 4678 . . . . . . . 8 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)})
87eleq1d 2818 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
98biimpd 228 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
109a1d 25 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))))
11103imp 1109 . . . 4 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))
123, 11syl 17 . . 3 (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))
1312adantl 481 . 2 ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))
142nbusgreledg 27748 . . 3 (𝐺 ∈ USGraph → ((𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑊‘0)) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
1514adantr 480 . 2 ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑊‘0)) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))
1613, 15mpbird 256 1 ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑊‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1537  wcel 2101  wral 3059  {cpr 4566  cfv 6447  (class class class)co 7295  0cc0 10899  1c1 10900   + caddc 10902  cmin 11233  ..^cfzo 13410  chash 14072  Word cword 14245  lastSclsw 14293  Vtxcvtx 27394  Edgcedg 27445  USGraphcusgr 27547   NeighbVtx cnbgr 27727   ClWWalksN cclwwlkn 28416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-2o 8318  df-oadd 8321  df-er 8518  df-map 8637  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-dju 9687  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-nn 12002  df-2 12064  df-n0 12262  df-xnn0 12334  df-z 12348  df-uz 12611  df-fz 13268  df-fzo 13411  df-hash 14073  df-word 14246  df-lsw 14294  df-edg 27446  df-upgr 27480  df-umgr 27481  df-usgr 27549  df-nbgr 27728  df-clwwlk 28374  df-clwwlkn 28417
This theorem is referenced by:  extwwlkfab  28744
  Copyright terms: Public domain W3C validator