Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlknlbonbgr1 | Structured version Visualization version GIF version |
Description: The last but one vertex in a closed walk is a neighbor of the first vertex of the closed walk. (Contributed by AV, 17-Feb-2022.) |
Ref | Expression |
---|---|
clwwlknlbonbgr1 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑊‘0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2738 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | clwwlknp 28302 | . . . 4 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) |
4 | lsw 14195 | . . . . . . . . . 10 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) | |
5 | fvoveq1 7278 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) = 𝑁 → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1))) | |
6 | 4, 5 | sylan9eq 2799 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (lastS‘𝑊) = (𝑊‘(𝑁 − 1))) |
7 | 6 | preq1d 4672 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘(𝑁 − 1)), (𝑊‘0)}) |
8 | 7 | eleq1d 2823 | . . . . . . 7 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))) |
9 | 8 | biimpd 228 | . . . . . 6 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))) |
10 | 9 | a1d 25 | . . . . 5 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)))) |
11 | 10 | 3imp 1109 | . . . 4 ⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)) |
12 | 3, 11 | syl 17 | . . 3 ⊢ (𝑊 ∈ (𝑁 ClWWalksN 𝐺) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)) |
13 | 12 | adantl 481 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺)) |
14 | 2 | nbusgreledg 27623 | . . 3 ⊢ (𝐺 ∈ USGraph → ((𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑊‘0)) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))) |
15 | 14 | adantr 480 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑊‘0)) ↔ {(𝑊‘(𝑁 − 1)), (𝑊‘0)} ∈ (Edg‘𝐺))) |
16 | 13, 15 | mpbird 256 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑊 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑊‘(𝑁 − 1)) ∈ (𝐺 NeighbVtx (𝑊‘0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {cpr 4560 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 − cmin 11135 ..^cfzo 13311 ♯chash 13972 Word cword 14145 lastSclsw 14193 Vtxcvtx 27269 Edgcedg 27320 USGraphcusgr 27422 NeighbVtx cnbgr 27602 ClWWalksN cclwwlkn 28289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-lsw 14194 df-edg 27321 df-upgr 27355 df-umgr 27356 df-usgr 27424 df-nbgr 27603 df-clwwlk 28247 df-clwwlkn 28290 |
This theorem is referenced by: extwwlkfab 28617 |
Copyright terms: Public domain | W3C validator |