MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2fv1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2fv1 27758
Description: Lemma 4a for clwlkclwwlklem2a 27761. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2fv1 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝐼
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2fv1
StepHypRef Expression
1 clwlkclwwlklem2.f . 2 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
2 breq1 5042 . . . 4 (𝑥 = 𝐼 → (𝑥 < ((♯‘𝑃) − 2) ↔ 𝐼 < ((♯‘𝑃) − 2)))
3 fveq2 6643 . . . . . 6 (𝑥 = 𝐼 → (𝑃𝑥) = (𝑃𝐼))
4 fvoveq1 7153 . . . . . 6 (𝑥 = 𝐼 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝐼 + 1)))
53, 4preq12d 4650 . . . . 5 (𝑥 = 𝐼 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
65fveq2d 6647 . . . 4 (𝑥 = 𝐼 → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
73preq1d 4648 . . . . 5 (𝑥 = 𝐼 → {(𝑃𝑥), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘0)})
87fveq2d 6647 . . . 4 (𝑥 = 𝐼 → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) = (𝐸‘{(𝑃𝐼), (𝑃‘0)}))
92, 6, 8ifbieq12d 4467 . . 3 (𝑥 = 𝐼 → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = if(𝐼 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}), (𝐸‘{(𝑃𝐼), (𝑃‘0)})))
10 elfzolt2 13030 . . . . 5 (𝐼 ∈ (0..^((♯‘𝑃) − 2)) → 𝐼 < ((♯‘𝑃) − 2))
1110adantl 485 . . . 4 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 < ((♯‘𝑃) − 2))
1211iftrued 4448 . . 3 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → if(𝐼 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}), (𝐸‘{(𝑃𝐼), (𝑃‘0)})) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
139, 12sylan9eqr 2878 . 2 ((((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) ∧ 𝑥 = 𝐼) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
14 nn0z 11983 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
15 2z 11992 . . . . . . 7 2 ∈ ℤ
1615a1i 11 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
1714, 16zsubcld 12070 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
18 peano2zm 12003 . . . . . 6 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
1914, 18syl 17 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ)
20 1red 10619 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ)
21 2re 11689 . . . . . . 7 2 ∈ ℝ
2221a1i 11 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
23 nn0re 11884 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
24 1le2 11824 . . . . . . 7 1 ≤ 2
2524a1i 11 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 1 ≤ 2)
2620, 22, 23, 25lesub2dd 11234 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1))
27 eluz2 12227 . . . . 5 (((♯‘𝑃) − 1) ∈ (ℤ‘((♯‘𝑃) − 2)) ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ ((♯‘𝑃) − 1) ∈ ℤ ∧ ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1)))
2817, 19, 26, 27syl3anbrc 1340 . . . 4 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ (ℤ‘((♯‘𝑃) − 2)))
29 fzoss2 13048 . . . 4 (((♯‘𝑃) − 1) ∈ (ℤ‘((♯‘𝑃) − 2)) → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1)))
3028, 29syl 17 . . 3 ((♯‘𝑃) ∈ ℕ0 → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1)))
3130sselda 3943 . 2 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 ∈ (0..^((♯‘𝑃) − 1)))
32 fvexd 6658 . 2 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}) ∈ V)
331, 13, 31, 32fvmptd2 6749 1 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  Vcvv 3471  wss 3910  ifcif 4440  {cpr 4542   class class class wbr 5039  cmpt 5119  ccnv 5527  cfv 6328  (class class class)co 7130  cr 10513  0cc0 10514  1c1 10515   + caddc 10517   < clt 10652  cle 10653  cmin 10847  2c2 11670  0cn0 11875  cz 11959  cuz 12221  ..^cfzo 13016  chash 13674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017
This theorem is referenced by:  clwlkclwwlklem2a4  27760
  Copyright terms: Public domain W3C validator