| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkclwwlklem2fv1 | Structured version Visualization version GIF version | ||
| Description: Lemma 4a for clwlkclwwlklem2a 29927. (Contributed by Alexander van der Vekens, 22-Jun-2018.) |
| Ref | Expression |
|---|---|
| clwlkclwwlklem2.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) |
| Ref | Expression |
|---|---|
| clwlkclwwlklem2fv1 | ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹‘𝐼) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlklem2.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) | |
| 2 | breq1 5110 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑥 < ((♯‘𝑃) − 2) ↔ 𝐼 < ((♯‘𝑃) − 2))) | |
| 3 | fveq2 6858 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝑃‘𝑥) = (𝑃‘𝐼)) | |
| 4 | fvoveq1 7410 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝐼 + 1))) | |
| 5 | 3, 4 | preq12d 4705 | . . . . 5 ⊢ (𝑥 = 𝐼 → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}) |
| 6 | 5 | fveq2d 6862 | . . . 4 ⊢ (𝑥 = 𝐼 → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| 7 | 3 | preq1d 4703 | . . . . 5 ⊢ (𝑥 = 𝐼 → {(𝑃‘𝑥), (𝑃‘0)} = {(𝑃‘𝐼), (𝑃‘0)}) |
| 8 | 7 | fveq2d 6862 | . . . 4 ⊢ (𝑥 = 𝐼 → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)})) |
| 9 | 2, 6, 8 | ifbieq12d 4517 | . . 3 ⊢ (𝑥 = 𝐼 → if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) = if(𝐼 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)}))) |
| 10 | elfzolt2 13629 | . . . . 5 ⊢ (𝐼 ∈ (0..^((♯‘𝑃) − 2)) → 𝐼 < ((♯‘𝑃) − 2)) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 < ((♯‘𝑃) − 2)) |
| 12 | 11 | iftrued 4496 | . . 3 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → if(𝐼 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)})) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| 13 | 9, 12 | sylan9eqr 2786 | . 2 ⊢ ((((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) ∧ 𝑥 = 𝐼) → if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| 14 | nn0z 12554 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
| 15 | 2z 12565 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ) |
| 17 | 14, 16 | zsubcld 12643 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ) |
| 18 | peano2zm 12576 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ) | |
| 19 | 14, 18 | syl 17 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ) |
| 20 | 1red 11175 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ) | |
| 21 | 2re 12260 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 22 | 21 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ) |
| 23 | nn0re 12451 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ) | |
| 24 | 1le2 12390 | . . . . . . 7 ⊢ 1 ≤ 2 | |
| 25 | 24 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 1 ≤ 2) |
| 26 | 20, 22, 23, 25 | lesub2dd 11795 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1)) |
| 27 | eluz2 12799 | . . . . 5 ⊢ (((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2)) ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ ((♯‘𝑃) − 1) ∈ ℤ ∧ ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1))) | |
| 28 | 17, 19, 26, 27 | syl3anbrc 1344 | . . . 4 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2))) |
| 29 | fzoss2 13648 | . . . 4 ⊢ (((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2)) → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1))) | |
| 30 | 28, 29 | syl 17 | . . 3 ⊢ ((♯‘𝑃) ∈ ℕ0 → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1))) |
| 31 | 30 | sselda 3946 | . 2 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 ∈ (0..^((♯‘𝑃) − 1))) |
| 32 | fvexd 6873 | . 2 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}) ∈ V) | |
| 33 | 1, 13, 31, 32 | fvmptd2 6976 | 1 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹‘𝐼) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ifcif 4488 {cpr 4591 class class class wbr 5107 ↦ cmpt 5188 ◡ccnv 5637 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 ≤ cle 11209 − cmin 11405 2c2 12241 ℕ0cn0 12442 ℤcz 12529 ℤ≥cuz 12793 ..^cfzo 13615 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 |
| This theorem is referenced by: clwlkclwwlklem2a4 29926 |
| Copyright terms: Public domain | W3C validator |