![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkclwwlklem2fv1 | Structured version Visualization version GIF version |
Description: Lemma 4a for clwlkclwwlklem2a 28991. (Contributed by Alexander van der Vekens, 22-Jun-2018.) |
Ref | Expression |
---|---|
clwlkclwwlklem2.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) |
Ref | Expression |
---|---|
clwlkclwwlklem2fv1 | ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹‘𝐼) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkclwwlklem2.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) | |
2 | breq1 5112 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑥 < ((♯‘𝑃) − 2) ↔ 𝐼 < ((♯‘𝑃) − 2))) | |
3 | fveq2 6846 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝑃‘𝑥) = (𝑃‘𝐼)) | |
4 | fvoveq1 7384 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝐼 + 1))) | |
5 | 3, 4 | preq12d 4706 | . . . . 5 ⊢ (𝑥 = 𝐼 → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}) |
6 | 5 | fveq2d 6850 | . . . 4 ⊢ (𝑥 = 𝐼 → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
7 | 3 | preq1d 4704 | . . . . 5 ⊢ (𝑥 = 𝐼 → {(𝑃‘𝑥), (𝑃‘0)} = {(𝑃‘𝐼), (𝑃‘0)}) |
8 | 7 | fveq2d 6850 | . . . 4 ⊢ (𝑥 = 𝐼 → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)})) |
9 | 2, 6, 8 | ifbieq12d 4518 | . . 3 ⊢ (𝑥 = 𝐼 → if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) = if(𝐼 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)}))) |
10 | elfzolt2 13590 | . . . . 5 ⊢ (𝐼 ∈ (0..^((♯‘𝑃) − 2)) → 𝐼 < ((♯‘𝑃) − 2)) | |
11 | 10 | adantl 483 | . . . 4 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 < ((♯‘𝑃) − 2)) |
12 | 11 | iftrued 4498 | . . 3 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → if(𝐼 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)})) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
13 | 9, 12 | sylan9eqr 2795 | . 2 ⊢ ((((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) ∧ 𝑥 = 𝐼) → if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
14 | nn0z 12532 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
15 | 2z 12543 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ) |
17 | 14, 16 | zsubcld 12620 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ) |
18 | peano2zm 12554 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ) | |
19 | 14, 18 | syl 17 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ) |
20 | 1red 11164 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ) | |
21 | 2re 12235 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
22 | 21 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ) |
23 | nn0re 12430 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ) | |
24 | 1le2 12370 | . . . . . . 7 ⊢ 1 ≤ 2 | |
25 | 24 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 1 ≤ 2) |
26 | 20, 22, 23, 25 | lesub2dd 11780 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1)) |
27 | eluz2 12777 | . . . . 5 ⊢ (((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2)) ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ ((♯‘𝑃) − 1) ∈ ℤ ∧ ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1))) | |
28 | 17, 19, 26, 27 | syl3anbrc 1344 | . . . 4 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2))) |
29 | fzoss2 13609 | . . . 4 ⊢ (((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2)) → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1))) | |
30 | 28, 29 | syl 17 | . . 3 ⊢ ((♯‘𝑃) ∈ ℕ0 → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1))) |
31 | 30 | sselda 3948 | . 2 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 ∈ (0..^((♯‘𝑃) − 1))) |
32 | fvexd 6861 | . 2 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}) ∈ V) | |
33 | 1, 13, 31, 32 | fvmptd2 6960 | 1 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹‘𝐼) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ⊆ wss 3914 ifcif 4490 {cpr 4592 class class class wbr 5109 ↦ cmpt 5192 ◡ccnv 5636 ‘cfv 6500 (class class class)co 7361 ℝcr 11058 0cc0 11059 1c1 11060 + caddc 11062 < clt 11197 ≤ cle 11198 − cmin 11393 2c2 12216 ℕ0cn0 12421 ℤcz 12507 ℤ≥cuz 12771 ..^cfzo 13576 ♯chash 14239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-n0 12422 df-z 12508 df-uz 12772 df-fz 13434 df-fzo 13577 |
This theorem is referenced by: clwlkclwwlklem2a4 28990 |
Copyright terms: Public domain | W3C validator |