MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2fv1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2fv1 29877
Description: Lemma 4a for clwlkclwwlklem2a 29880. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2fv1 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝐼
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2fv1
StepHypRef Expression
1 clwlkclwwlklem2.f . 2 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
2 breq1 5152 . . . 4 (𝑥 = 𝐼 → (𝑥 < ((♯‘𝑃) − 2) ↔ 𝐼 < ((♯‘𝑃) − 2)))
3 fveq2 6896 . . . . . 6 (𝑥 = 𝐼 → (𝑃𝑥) = (𝑃𝐼))
4 fvoveq1 7442 . . . . . 6 (𝑥 = 𝐼 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝐼 + 1)))
53, 4preq12d 4747 . . . . 5 (𝑥 = 𝐼 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
65fveq2d 6900 . . . 4 (𝑥 = 𝐼 → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
73preq1d 4745 . . . . 5 (𝑥 = 𝐼 → {(𝑃𝑥), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘0)})
87fveq2d 6900 . . . 4 (𝑥 = 𝐼 → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) = (𝐸‘{(𝑃𝐼), (𝑃‘0)}))
92, 6, 8ifbieq12d 4558 . . 3 (𝑥 = 𝐼 → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = if(𝐼 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}), (𝐸‘{(𝑃𝐼), (𝑃‘0)})))
10 elfzolt2 13676 . . . . 5 (𝐼 ∈ (0..^((♯‘𝑃) − 2)) → 𝐼 < ((♯‘𝑃) − 2))
1110adantl 480 . . . 4 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 < ((♯‘𝑃) − 2))
1211iftrued 4538 . . 3 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → if(𝐼 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}), (𝐸‘{(𝑃𝐼), (𝑃‘0)})) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
139, 12sylan9eqr 2787 . 2 ((((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) ∧ 𝑥 = 𝐼) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
14 nn0z 12616 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
15 2z 12627 . . . . . . 7 2 ∈ ℤ
1615a1i 11 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
1714, 16zsubcld 12704 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
18 peano2zm 12638 . . . . . 6 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
1914, 18syl 17 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ)
20 1red 11247 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ)
21 2re 12319 . . . . . . 7 2 ∈ ℝ
2221a1i 11 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
23 nn0re 12514 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
24 1le2 12454 . . . . . . 7 1 ≤ 2
2524a1i 11 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 1 ≤ 2)
2620, 22, 23, 25lesub2dd 11863 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1))
27 eluz2 12861 . . . . 5 (((♯‘𝑃) − 1) ∈ (ℤ‘((♯‘𝑃) − 2)) ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ ((♯‘𝑃) − 1) ∈ ℤ ∧ ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1)))
2817, 19, 26, 27syl3anbrc 1340 . . . 4 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ (ℤ‘((♯‘𝑃) − 2)))
29 fzoss2 13695 . . . 4 (((♯‘𝑃) − 1) ∈ (ℤ‘((♯‘𝑃) − 2)) → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1)))
3028, 29syl 17 . . 3 ((♯‘𝑃) ∈ ℕ0 → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1)))
3130sselda 3976 . 2 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 ∈ (0..^((♯‘𝑃) − 1)))
32 fvexd 6911 . 2 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}) ∈ V)
331, 13, 31, 32fvmptd2 7012 1 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  wss 3944  ifcif 4530  {cpr 4632   class class class wbr 5149  cmpt 5232  ccnv 5677  cfv 6549  (class class class)co 7419  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280  cle 11281  cmin 11476  2c2 12300  0cn0 12505  cz 12591  cuz 12855  ..^cfzo 13662  chash 14325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663
This theorem is referenced by:  clwlkclwwlklem2a4  29879
  Copyright terms: Public domain W3C validator