| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkclwwlklem2fv1 | Structured version Visualization version GIF version | ||
| Description: Lemma 4a for clwlkclwwlklem2a 29960. (Contributed by Alexander van der Vekens, 22-Jun-2018.) |
| Ref | Expression |
|---|---|
| clwlkclwwlklem2.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) |
| Ref | Expression |
|---|---|
| clwlkclwwlklem2fv1 | ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹‘𝐼) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlklem2.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) | |
| 2 | breq1 5098 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑥 < ((♯‘𝑃) − 2) ↔ 𝐼 < ((♯‘𝑃) − 2))) | |
| 3 | fveq2 6826 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝑃‘𝑥) = (𝑃‘𝐼)) | |
| 4 | fvoveq1 7376 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝐼 + 1))) | |
| 5 | 3, 4 | preq12d 4695 | . . . . 5 ⊢ (𝑥 = 𝐼 → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}) |
| 6 | 5 | fveq2d 6830 | . . . 4 ⊢ (𝑥 = 𝐼 → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| 7 | 3 | preq1d 4693 | . . . . 5 ⊢ (𝑥 = 𝐼 → {(𝑃‘𝑥), (𝑃‘0)} = {(𝑃‘𝐼), (𝑃‘0)}) |
| 8 | 7 | fveq2d 6830 | . . . 4 ⊢ (𝑥 = 𝐼 → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)})) |
| 9 | 2, 6, 8 | ifbieq12d 4507 | . . 3 ⊢ (𝑥 = 𝐼 → if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) = if(𝐼 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)}))) |
| 10 | elfzolt2 13589 | . . . . 5 ⊢ (𝐼 ∈ (0..^((♯‘𝑃) − 2)) → 𝐼 < ((♯‘𝑃) − 2)) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 < ((♯‘𝑃) − 2)) |
| 12 | 11 | iftrued 4486 | . . 3 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → if(𝐼 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)})) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| 13 | 9, 12 | sylan9eqr 2786 | . 2 ⊢ ((((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) ∧ 𝑥 = 𝐼) → if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| 14 | nn0z 12514 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
| 15 | 2z 12525 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ) |
| 17 | 14, 16 | zsubcld 12603 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ) |
| 18 | peano2zm 12536 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ) | |
| 19 | 14, 18 | syl 17 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ) |
| 20 | 1red 11135 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ) | |
| 21 | 2re 12220 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 22 | 21 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ) |
| 23 | nn0re 12411 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ) | |
| 24 | 1le2 12350 | . . . . . . 7 ⊢ 1 ≤ 2 | |
| 25 | 24 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 1 ≤ 2) |
| 26 | 20, 22, 23, 25 | lesub2dd 11755 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1)) |
| 27 | eluz2 12759 | . . . . 5 ⊢ (((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2)) ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ ((♯‘𝑃) − 1) ∈ ℤ ∧ ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1))) | |
| 28 | 17, 19, 26, 27 | syl3anbrc 1344 | . . . 4 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2))) |
| 29 | fzoss2 13608 | . . . 4 ⊢ (((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2)) → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1))) | |
| 30 | 28, 29 | syl 17 | . . 3 ⊢ ((♯‘𝑃) ∈ ℕ0 → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1))) |
| 31 | 30 | sselda 3937 | . 2 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 ∈ (0..^((♯‘𝑃) − 1))) |
| 32 | fvexd 6841 | . 2 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}) ∈ V) | |
| 33 | 1, 13, 31, 32 | fvmptd2 6942 | 1 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹‘𝐼) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 ifcif 4478 {cpr 4581 class class class wbr 5095 ↦ cmpt 5176 ◡ccnv 5622 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 1c1 11029 + caddc 11031 < clt 11168 ≤ cle 11169 − cmin 11365 2c2 12201 ℕ0cn0 12402 ℤcz 12489 ℤ≥cuz 12753 ..^cfzo 13575 ♯chash 14255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 |
| This theorem is referenced by: clwlkclwwlklem2a4 29959 |
| Copyright terms: Public domain | W3C validator |