![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwlkclwwlklem2fv1 | Structured version Visualization version GIF version |
Description: Lemma 4a for clwlkclwwlklem2a 30030. (Contributed by Alexander van der Vekens, 22-Jun-2018.) |
Ref | Expression |
---|---|
clwlkclwwlklem2.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) |
Ref | Expression |
---|---|
clwlkclwwlklem2fv1 | ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹‘𝐼) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkclwwlklem2.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) | |
2 | breq1 5169 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑥 < ((♯‘𝑃) − 2) ↔ 𝐼 < ((♯‘𝑃) − 2))) | |
3 | fveq2 6920 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝑃‘𝑥) = (𝑃‘𝐼)) | |
4 | fvoveq1 7471 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝐼 + 1))) | |
5 | 3, 4 | preq12d 4766 | . . . . 5 ⊢ (𝑥 = 𝐼 → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}) |
6 | 5 | fveq2d 6924 | . . . 4 ⊢ (𝑥 = 𝐼 → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
7 | 3 | preq1d 4764 | . . . . 5 ⊢ (𝑥 = 𝐼 → {(𝑃‘𝑥), (𝑃‘0)} = {(𝑃‘𝐼), (𝑃‘0)}) |
8 | 7 | fveq2d 6924 | . . . 4 ⊢ (𝑥 = 𝐼 → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)})) |
9 | 2, 6, 8 | ifbieq12d 4576 | . . 3 ⊢ (𝑥 = 𝐼 → if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) = if(𝐼 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)}))) |
10 | elfzolt2 13725 | . . . . 5 ⊢ (𝐼 ∈ (0..^((♯‘𝑃) − 2)) → 𝐼 < ((♯‘𝑃) − 2)) | |
11 | 10 | adantl 481 | . . . 4 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 < ((♯‘𝑃) − 2)) |
12 | 11 | iftrued 4556 | . . 3 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → if(𝐼 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)})) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
13 | 9, 12 | sylan9eqr 2802 | . 2 ⊢ ((((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) ∧ 𝑥 = 𝐼) → if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
14 | nn0z 12664 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
15 | 2z 12675 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ) |
17 | 14, 16 | zsubcld 12752 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ) |
18 | peano2zm 12686 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ) | |
19 | 14, 18 | syl 17 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ) |
20 | 1red 11291 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ) | |
21 | 2re 12367 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
22 | 21 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ) |
23 | nn0re 12562 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ) | |
24 | 1le2 12502 | . . . . . . 7 ⊢ 1 ≤ 2 | |
25 | 24 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 1 ≤ 2) |
26 | 20, 22, 23, 25 | lesub2dd 11907 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1)) |
27 | eluz2 12909 | . . . . 5 ⊢ (((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2)) ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ ((♯‘𝑃) − 1) ∈ ℤ ∧ ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1))) | |
28 | 17, 19, 26, 27 | syl3anbrc 1343 | . . . 4 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2))) |
29 | fzoss2 13744 | . . . 4 ⊢ (((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2)) → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1))) | |
30 | 28, 29 | syl 17 | . . 3 ⊢ ((♯‘𝑃) ∈ ℕ0 → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1))) |
31 | 30 | sselda 4008 | . 2 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 ∈ (0..^((♯‘𝑃) − 1))) |
32 | fvexd 6935 | . 2 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}) ∈ V) | |
33 | 1, 13, 31, 32 | fvmptd2 7037 | 1 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹‘𝐼) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ifcif 4548 {cpr 4650 class class class wbr 5166 ↦ cmpt 5249 ◡ccnv 5699 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 − cmin 11520 2c2 12348 ℕ0cn0 12553 ℤcz 12639 ℤ≥cuz 12903 ..^cfzo 13711 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 |
This theorem is referenced by: clwlkclwwlklem2a4 30029 |
Copyright terms: Public domain | W3C validator |