MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2fv1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2fv1 28359
Description: Lemma 4a for clwlkclwwlklem2a 28362. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2fv1 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝐼
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2fv1
StepHypRef Expression
1 clwlkclwwlklem2.f . 2 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
2 breq1 5077 . . . 4 (𝑥 = 𝐼 → (𝑥 < ((♯‘𝑃) − 2) ↔ 𝐼 < ((♯‘𝑃) − 2)))
3 fveq2 6774 . . . . . 6 (𝑥 = 𝐼 → (𝑃𝑥) = (𝑃𝐼))
4 fvoveq1 7298 . . . . . 6 (𝑥 = 𝐼 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝐼 + 1)))
53, 4preq12d 4677 . . . . 5 (𝑥 = 𝐼 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
65fveq2d 6778 . . . 4 (𝑥 = 𝐼 → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
73preq1d 4675 . . . . 5 (𝑥 = 𝐼 → {(𝑃𝑥), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘0)})
87fveq2d 6778 . . . 4 (𝑥 = 𝐼 → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) = (𝐸‘{(𝑃𝐼), (𝑃‘0)}))
92, 6, 8ifbieq12d 4487 . . 3 (𝑥 = 𝐼 → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = if(𝐼 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}), (𝐸‘{(𝑃𝐼), (𝑃‘0)})))
10 elfzolt2 13396 . . . . 5 (𝐼 ∈ (0..^((♯‘𝑃) − 2)) → 𝐼 < ((♯‘𝑃) − 2))
1110adantl 482 . . . 4 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 < ((♯‘𝑃) − 2))
1211iftrued 4467 . . 3 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → if(𝐼 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}), (𝐸‘{(𝑃𝐼), (𝑃‘0)})) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
139, 12sylan9eqr 2800 . 2 ((((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) ∧ 𝑥 = 𝐼) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
14 nn0z 12343 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
15 2z 12352 . . . . . . 7 2 ∈ ℤ
1615a1i 11 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
1714, 16zsubcld 12431 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
18 peano2zm 12363 . . . . . 6 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
1914, 18syl 17 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ)
20 1red 10976 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ)
21 2re 12047 . . . . . . 7 2 ∈ ℝ
2221a1i 11 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
23 nn0re 12242 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
24 1le2 12182 . . . . . . 7 1 ≤ 2
2524a1i 11 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 1 ≤ 2)
2620, 22, 23, 25lesub2dd 11592 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1))
27 eluz2 12588 . . . . 5 (((♯‘𝑃) − 1) ∈ (ℤ‘((♯‘𝑃) − 2)) ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ ((♯‘𝑃) − 1) ∈ ℤ ∧ ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1)))
2817, 19, 26, 27syl3anbrc 1342 . . . 4 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ (ℤ‘((♯‘𝑃) − 2)))
29 fzoss2 13415 . . . 4 (((♯‘𝑃) − 1) ∈ (ℤ‘((♯‘𝑃) − 2)) → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1)))
3028, 29syl 17 . . 3 ((♯‘𝑃) ∈ ℕ0 → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1)))
3130sselda 3921 . 2 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 ∈ (0..^((♯‘𝑃) − 1)))
32 fvexd 6789 . 2 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}) ∈ V)
331, 13, 31, 32fvmptd2 6883 1 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  ifcif 4459  {cpr 4563   class class class wbr 5074  cmpt 5157  ccnv 5588  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  2c2 12028  0cn0 12233  cz 12319  cuz 12582  ..^cfzo 13382  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383
This theorem is referenced by:  clwlkclwwlklem2a4  28361
  Copyright terms: Public domain W3C validator