MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2fv1 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2fv1 29245
Description: Lemma 4a for clwlkclwwlklem2a 29248. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2fv1 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸   𝑥,𝐼
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2fv1
StepHypRef Expression
1 clwlkclwwlklem2.f . 2 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
2 breq1 5151 . . . 4 (𝑥 = 𝐼 → (𝑥 < ((♯‘𝑃) − 2) ↔ 𝐼 < ((♯‘𝑃) − 2)))
3 fveq2 6891 . . . . . 6 (𝑥 = 𝐼 → (𝑃𝑥) = (𝑃𝐼))
4 fvoveq1 7431 . . . . . 6 (𝑥 = 𝐼 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝐼 + 1)))
53, 4preq12d 4745 . . . . 5 (𝑥 = 𝐼 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝐼), (𝑃‘(𝐼 + 1))})
65fveq2d 6895 . . . 4 (𝑥 = 𝐼 → (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
73preq1d 4743 . . . . 5 (𝑥 = 𝐼 → {(𝑃𝑥), (𝑃‘0)} = {(𝑃𝐼), (𝑃‘0)})
87fveq2d 6895 . . . 4 (𝑥 = 𝐼 → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) = (𝐸‘{(𝑃𝐼), (𝑃‘0)}))
92, 6, 8ifbieq12d 4556 . . 3 (𝑥 = 𝐼 → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = if(𝐼 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}), (𝐸‘{(𝑃𝐼), (𝑃‘0)})))
10 elfzolt2 13640 . . . . 5 (𝐼 ∈ (0..^((♯‘𝑃) − 2)) → 𝐼 < ((♯‘𝑃) − 2))
1110adantl 482 . . . 4 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 < ((♯‘𝑃) − 2))
1211iftrued 4536 . . 3 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → if(𝐼 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}), (𝐸‘{(𝑃𝐼), (𝑃‘0)})) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
139, 12sylan9eqr 2794 . 2 ((((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) ∧ 𝑥 = 𝐼) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
14 nn0z 12582 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
15 2z 12593 . . . . . . 7 2 ∈ ℤ
1615a1i 11 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ)
1714, 16zsubcld 12670 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
18 peano2zm 12604 . . . . . 6 ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ)
1914, 18syl 17 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ)
20 1red 11214 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ)
21 2re 12285 . . . . . . 7 2 ∈ ℝ
2221a1i 11 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
23 nn0re 12480 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
24 1le2 12420 . . . . . . 7 1 ≤ 2
2524a1i 11 . . . . . 6 ((♯‘𝑃) ∈ ℕ0 → 1 ≤ 2)
2620, 22, 23, 25lesub2dd 11830 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1))
27 eluz2 12827 . . . . 5 (((♯‘𝑃) − 1) ∈ (ℤ‘((♯‘𝑃) − 2)) ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ ((♯‘𝑃) − 1) ∈ ℤ ∧ ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1)))
2817, 19, 26, 27syl3anbrc 1343 . . . 4 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ (ℤ‘((♯‘𝑃) − 2)))
29 fzoss2 13659 . . . 4 (((♯‘𝑃) − 1) ∈ (ℤ‘((♯‘𝑃) − 2)) → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1)))
3028, 29syl 17 . . 3 ((♯‘𝑃) ∈ ℕ0 → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1)))
3130sselda 3982 . 2 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 ∈ (0..^((♯‘𝑃) − 1)))
32 fvexd 6906 . 2 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}) ∈ V)
331, 13, 31, 32fvmptd2 7006 1 (((♯‘𝑃) ∈ ℕ0𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹𝐼) = (𝐸‘{(𝑃𝐼), (𝑃‘(𝐼 + 1))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  wss 3948  ifcif 4528  {cpr 4630   class class class wbr 5148  cmpt 5231  ccnv 5675  cfv 6543  (class class class)co 7408  cr 11108  0cc0 11109  1c1 11110   + caddc 11112   < clt 11247  cle 11248  cmin 11443  2c2 12266  0cn0 12471  cz 12557  cuz 12821  ..^cfzo 13626  chash 14289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627
This theorem is referenced by:  clwlkclwwlklem2a4  29247
  Copyright terms: Public domain W3C validator