| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwlkclwwlklem2fv1 | Structured version Visualization version GIF version | ||
| Description: Lemma 4a for clwlkclwwlklem2a 29980. (Contributed by Alexander van der Vekens, 22-Jun-2018.) |
| Ref | Expression |
|---|---|
| clwlkclwwlklem2.f | ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) |
| Ref | Expression |
|---|---|
| clwlkclwwlklem2fv1 | ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹‘𝐼) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlklem2.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}))) | |
| 2 | breq1 5096 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑥 < ((♯‘𝑃) − 2) ↔ 𝐼 < ((♯‘𝑃) − 2))) | |
| 3 | fveq2 6828 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝑃‘𝑥) = (𝑃‘𝐼)) | |
| 4 | fvoveq1 7375 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝐼 + 1))) | |
| 5 | 3, 4 | preq12d 4693 | . . . . 5 ⊢ (𝑥 = 𝐼 → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}) |
| 6 | 5 | fveq2d 6832 | . . . 4 ⊢ (𝑥 = 𝐼 → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| 7 | 3 | preq1d 4691 | . . . . 5 ⊢ (𝑥 = 𝐼 → {(𝑃‘𝑥), (𝑃‘0)} = {(𝑃‘𝐼), (𝑃‘0)}) |
| 8 | 7 | fveq2d 6832 | . . . 4 ⊢ (𝑥 = 𝐼 → (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)}) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)})) |
| 9 | 2, 6, 8 | ifbieq12d 4503 | . . 3 ⊢ (𝑥 = 𝐼 → if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) = if(𝐼 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)}))) |
| 10 | elfzolt2 13570 | . . . . 5 ⊢ (𝐼 ∈ (0..^((♯‘𝑃) − 2)) → 𝐼 < ((♯‘𝑃) − 2)) | |
| 11 | 10 | adantl 481 | . . . 4 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 < ((♯‘𝑃) − 2)) |
| 12 | 11 | iftrued 4482 | . . 3 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → if(𝐼 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}), (◡𝐸‘{(𝑃‘𝐼), (𝑃‘0)})) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| 13 | 9, 12 | sylan9eqr 2790 | . 2 ⊢ ((((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) ∧ 𝑥 = 𝐼) → if(𝑥 < ((♯‘𝑃) − 2), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}), (◡𝐸‘{(𝑃‘𝑥), (𝑃‘0)})) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| 14 | nn0z 12499 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ) | |
| 15 | 2z 12510 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℤ) |
| 17 | 14, 16 | zsubcld 12588 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ) |
| 18 | peano2zm 12521 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℤ → ((♯‘𝑃) − 1) ∈ ℤ) | |
| 19 | 14, 18 | syl 17 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ ℤ) |
| 20 | 1red 11120 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ) | |
| 21 | 2re 12206 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 22 | 21 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ) |
| 23 | nn0re 12397 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ) | |
| 24 | 1le2 12336 | . . . . . . 7 ⊢ 1 ≤ 2 | |
| 25 | 24 | a1i 11 | . . . . . 6 ⊢ ((♯‘𝑃) ∈ ℕ0 → 1 ≤ 2) |
| 26 | 20, 22, 23, 25 | lesub2dd 11741 | . . . . 5 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1)) |
| 27 | eluz2 12744 | . . . . 5 ⊢ (((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2)) ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ ((♯‘𝑃) − 1) ∈ ℤ ∧ ((♯‘𝑃) − 2) ≤ ((♯‘𝑃) − 1))) | |
| 28 | 17, 19, 26, 27 | syl3anbrc 1344 | . . . 4 ⊢ ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2))) |
| 29 | fzoss2 13589 | . . . 4 ⊢ (((♯‘𝑃) − 1) ∈ (ℤ≥‘((♯‘𝑃) − 2)) → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1))) | |
| 30 | 28, 29 | syl 17 | . . 3 ⊢ ((♯‘𝑃) ∈ ℕ0 → (0..^((♯‘𝑃) − 2)) ⊆ (0..^((♯‘𝑃) − 1))) |
| 31 | 30 | sselda 3930 | . 2 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → 𝐼 ∈ (0..^((♯‘𝑃) − 1))) |
| 32 | fvexd 6843 | . 2 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))}) ∈ V) | |
| 33 | 1, 13, 31, 32 | fvmptd2 6943 | 1 ⊢ (((♯‘𝑃) ∈ ℕ0 ∧ 𝐼 ∈ (0..^((♯‘𝑃) − 2))) → (𝐹‘𝐼) = (◡𝐸‘{(𝑃‘𝐼), (𝑃‘(𝐼 + 1))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ifcif 4474 {cpr 4577 class class class wbr 5093 ↦ cmpt 5174 ◡ccnv 5618 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 0cc0 11013 1c1 11014 + caddc 11016 < clt 11153 ≤ cle 11154 − cmin 11351 2c2 12187 ℕ0cn0 12388 ℤcz 12475 ℤ≥cuz 12738 ..^cfzo 13556 ♯chash 14239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 |
| This theorem is referenced by: clwlkclwwlklem2a4 29979 |
| Copyright terms: Public domain | W3C validator |