![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnpr2g | Structured version Visualization version GIF version |
Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
Ref | Expression |
---|---|
fnpr2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝐵, (𝐹‘𝐵)⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4695 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏}) | |
2 | 1 | fneq2d 6597 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 Fn {𝐴, 𝑏})) |
3 | id 22 | . . . . . 6 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
4 | fveq2 6843 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
5 | 3, 4 | opeq12d 4839 | . . . . 5 ⊢ (𝑎 = 𝐴 → ⟨𝑎, (𝐹‘𝑎)⟩ = ⟨𝐴, (𝐹‘𝐴)⟩) |
6 | 5 | preq1d 4701 | . . . 4 ⊢ (𝑎 = 𝐴 → {⟨𝑎, (𝐹‘𝑎)⟩, ⟨𝑏, (𝐹‘𝑏)⟩} = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝑏, (𝐹‘𝑏)⟩}) |
7 | 6 | eqeq2d 2744 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩, ⟨𝑏, (𝐹‘𝑏)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝑏, (𝐹‘𝑏)⟩})) |
8 | 2, 7 | bibi12d 346 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩, ⟨𝑏, (𝐹‘𝑏)⟩}) ↔ (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝑏, (𝐹‘𝑏)⟩}))) |
9 | preq2 4696 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵}) | |
10 | 9 | fneq2d 6597 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 Fn {𝐴, 𝐵})) |
11 | id 22 | . . . . . 6 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
12 | fveq2 6843 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) | |
13 | 11, 12 | opeq12d 4839 | . . . . 5 ⊢ (𝑏 = 𝐵 → ⟨𝑏, (𝐹‘𝑏)⟩ = ⟨𝐵, (𝐹‘𝐵)⟩) |
14 | 13 | preq2d 4702 | . . . 4 ⊢ (𝑏 = 𝐵 → {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝑏, (𝐹‘𝑏)⟩} = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝐵, (𝐹‘𝐵)⟩}) |
15 | 14 | eqeq2d 2744 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝑏, (𝐹‘𝑏)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝐵, (𝐹‘𝐵)⟩})) |
16 | 10, 15 | bibi12d 346 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝑏, (𝐹‘𝑏)⟩}) ↔ (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝐵, (𝐹‘𝐵)⟩}))) |
17 | vex 3448 | . . 3 ⊢ 𝑎 ∈ V | |
18 | vex 3448 | . . 3 ⊢ 𝑏 ∈ V | |
19 | 17, 18 | fnprb 7159 | . 2 ⊢ (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {⟨𝑎, (𝐹‘𝑎)⟩, ⟨𝑏, (𝐹‘𝑏)⟩}) |
20 | 8, 16, 19 | vtocl2g 3530 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩, ⟨𝐵, (𝐹‘𝐵)⟩})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cpr 4589 ⟨cop 4593 Fn wfn 6492 ‘cfv 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 |
This theorem is referenced by: fpr2g 7162 |
Copyright terms: Public domain | W3C validator |