Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnpr2g | Structured version Visualization version GIF version |
Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
Ref | Expression |
---|---|
fnpr2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4666 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏}) | |
2 | 1 | fneq2d 6511 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 Fn {𝐴, 𝑏})) |
3 | id 22 | . . . . . 6 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
4 | fveq2 6756 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
5 | 3, 4 | opeq12d 4809 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, (𝐹‘𝑎)〉 = 〈𝐴, (𝐹‘𝐴)〉) |
6 | 5 | preq1d 4672 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉} = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}) |
7 | 6 | eqeq2d 2749 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉})) |
8 | 2, 7 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉}) ↔ (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}))) |
9 | preq2 4667 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵}) | |
10 | 9 | fneq2d 6511 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 Fn {𝐴, 𝐵})) |
11 | id 22 | . . . . . 6 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
12 | fveq2 6756 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) | |
13 | 11, 12 | opeq12d 4809 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝑏, (𝐹‘𝑏)〉 = 〈𝐵, (𝐹‘𝐵)〉) |
14 | 13 | preq2d 4673 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉} = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}) |
15 | 14 | eqeq2d 2749 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
16 | 10, 15 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}) ↔ (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}))) |
17 | vex 3426 | . . 3 ⊢ 𝑎 ∈ V | |
18 | vex 3426 | . . 3 ⊢ 𝑏 ∈ V | |
19 | 17, 18 | fnprb 7066 | . 2 ⊢ (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉}) |
20 | 8, 16, 19 | vtocl2g 3500 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cpr 4560 〈cop 4564 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: fpr2g 7069 |
Copyright terms: Public domain | W3C validator |