MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnpr2g Structured version   Visualization version   GIF version

Theorem fnpr2g 7153
Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Assertion
Ref Expression
fnpr2g ((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))

Proof of Theorem fnpr2g
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 4687 . . . 4 (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏})
21fneq2d 6583 . . 3 (𝑎 = 𝐴 → (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 Fn {𝐴, 𝑏}))
3 id 22 . . . . . 6 (𝑎 = 𝐴𝑎 = 𝐴)
4 fveq2 6831 . . . . . 6 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
53, 4opeq12d 4834 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, (𝐹𝑎)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
65preq1d 4693 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩})
76eqeq2d 2744 . . 3 (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩}))
82, 7bibi12d 345 . 2 (𝑎 = 𝐴 → ((𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩}) ↔ (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩})))
9 preq2 4688 . . . 4 (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵})
109fneq2d 6583 . . 3 (𝑏 = 𝐵 → (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 Fn {𝐴, 𝐵}))
11 id 22 . . . . . 6 (𝑏 = 𝐵𝑏 = 𝐵)
12 fveq2 6831 . . . . . 6 (𝑏 = 𝐵 → (𝐹𝑏) = (𝐹𝐵))
1311, 12opeq12d 4834 . . . . 5 (𝑏 = 𝐵 → ⟨𝑏, (𝐹𝑏)⟩ = ⟨𝐵, (𝐹𝐵)⟩)
1413preq2d 4694 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
1514eqeq2d 2744 . . 3 (𝑏 = 𝐵 → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
1610, 15bibi12d 345 . 2 (𝑏 = 𝐵 → ((𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩}) ↔ (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))
17 vex 3442 . . 3 𝑎 ∈ V
18 vex 3442 . . 3 𝑏 ∈ V
1917, 18fnprb 7151 . 2 (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩})
208, 16, 19vtocl2g 3527 1 ((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cpr 4579  cop 4583   Fn wfn 6484  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497
This theorem is referenced by:  fpr2g  7154
  Copyright terms: Public domain W3C validator