| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnpr2g | Structured version Visualization version GIF version | ||
| Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| fnpr2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4700 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏}) | |
| 2 | 1 | fneq2d 6615 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 Fn {𝐴, 𝑏})) |
| 3 | id 22 | . . . . . 6 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
| 4 | fveq2 6861 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
| 5 | 3, 4 | opeq12d 4848 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, (𝐹‘𝑎)〉 = 〈𝐴, (𝐹‘𝐴)〉) |
| 6 | 5 | preq1d 4706 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉} = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}) |
| 7 | 6 | eqeq2d 2741 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉})) |
| 8 | 2, 7 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉}) ↔ (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}))) |
| 9 | preq2 4701 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵}) | |
| 10 | 9 | fneq2d 6615 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 Fn {𝐴, 𝐵})) |
| 11 | id 22 | . . . . . 6 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
| 12 | fveq2 6861 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) | |
| 13 | 11, 12 | opeq12d 4848 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝑏, (𝐹‘𝑏)〉 = 〈𝐵, (𝐹‘𝐵)〉) |
| 14 | 13 | preq2d 4707 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉} = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}) |
| 15 | 14 | eqeq2d 2741 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
| 16 | 10, 15 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}) ↔ (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}))) |
| 17 | vex 3454 | . . 3 ⊢ 𝑎 ∈ V | |
| 18 | vex 3454 | . . 3 ⊢ 𝑏 ∈ V | |
| 19 | 17, 18 | fnprb 7185 | . 2 ⊢ (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉}) |
| 20 | 8, 16, 19 | vtocl2g 3543 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cpr 4594 〈cop 4598 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 |
| This theorem is referenced by: fpr2g 7188 |
| Copyright terms: Public domain | W3C validator |