MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnpr2g Structured version   Visualization version   GIF version

Theorem fnpr2g 7230
Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Assertion
Ref Expression
fnpr2g ((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))

Proof of Theorem fnpr2g
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 4733 . . . 4 (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏})
21fneq2d 6662 . . 3 (𝑎 = 𝐴 → (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 Fn {𝐴, 𝑏}))
3 id 22 . . . . . 6 (𝑎 = 𝐴𝑎 = 𝐴)
4 fveq2 6906 . . . . . 6 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
53, 4opeq12d 4881 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, (𝐹𝑎)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
65preq1d 4739 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩})
76eqeq2d 2748 . . 3 (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩}))
82, 7bibi12d 345 . 2 (𝑎 = 𝐴 → ((𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩}) ↔ (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩})))
9 preq2 4734 . . . 4 (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵})
109fneq2d 6662 . . 3 (𝑏 = 𝐵 → (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 Fn {𝐴, 𝐵}))
11 id 22 . . . . . 6 (𝑏 = 𝐵𝑏 = 𝐵)
12 fveq2 6906 . . . . . 6 (𝑏 = 𝐵 → (𝐹𝑏) = (𝐹𝐵))
1311, 12opeq12d 4881 . . . . 5 (𝑏 = 𝐵 → ⟨𝑏, (𝐹𝑏)⟩ = ⟨𝐵, (𝐹𝐵)⟩)
1413preq2d 4740 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
1514eqeq2d 2748 . . 3 (𝑏 = 𝐵 → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
1610, 15bibi12d 345 . 2 (𝑏 = 𝐵 → ((𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩}) ↔ (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))
17 vex 3484 . . 3 𝑎 ∈ V
18 vex 3484 . . 3 𝑏 ∈ V
1917, 18fnprb 7228 . 2 (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩})
208, 16, 19vtocl2g 3574 1 ((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cpr 4628  cop 4632   Fn wfn 6556  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569
This theorem is referenced by:  fpr2g  7231
  Copyright terms: Public domain W3C validator