| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnpr2g | Structured version Visualization version GIF version | ||
| Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| fnpr2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4687 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏}) | |
| 2 | 1 | fneq2d 6580 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 Fn {𝐴, 𝑏})) |
| 3 | id 22 | . . . . . 6 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
| 4 | fveq2 6826 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
| 5 | 3, 4 | opeq12d 4835 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, (𝐹‘𝑎)〉 = 〈𝐴, (𝐹‘𝐴)〉) |
| 6 | 5 | preq1d 4693 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉} = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}) |
| 7 | 6 | eqeq2d 2740 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉})) |
| 8 | 2, 7 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉}) ↔ (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}))) |
| 9 | preq2 4688 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵}) | |
| 10 | 9 | fneq2d 6580 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 Fn {𝐴, 𝐵})) |
| 11 | id 22 | . . . . . 6 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
| 12 | fveq2 6826 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) | |
| 13 | 11, 12 | opeq12d 4835 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝑏, (𝐹‘𝑏)〉 = 〈𝐵, (𝐹‘𝐵)〉) |
| 14 | 13 | preq2d 4694 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉} = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}) |
| 15 | 14 | eqeq2d 2740 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
| 16 | 10, 15 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}) ↔ (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}))) |
| 17 | vex 3442 | . . 3 ⊢ 𝑎 ∈ V | |
| 18 | vex 3442 | . . 3 ⊢ 𝑏 ∈ V | |
| 19 | 17, 18 | fnprb 7148 | . 2 ⊢ (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉}) |
| 20 | 8, 16, 19 | vtocl2g 3531 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cpr 4581 〈cop 4585 Fn wfn 6481 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 |
| This theorem is referenced by: fpr2g 7151 |
| Copyright terms: Public domain | W3C validator |