| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnpr2g | Structured version Visualization version GIF version | ||
| Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| fnpr2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 4709 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏}) | |
| 2 | 1 | fneq2d 6632 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 Fn {𝐴, 𝑏})) |
| 3 | id 22 | . . . . . 6 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
| 4 | fveq2 6876 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
| 5 | 3, 4 | opeq12d 4857 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, (𝐹‘𝑎)〉 = 〈𝐴, (𝐹‘𝐴)〉) |
| 6 | 5 | preq1d 4715 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉} = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}) |
| 7 | 6 | eqeq2d 2746 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉})) |
| 8 | 2, 7 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉}) ↔ (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}))) |
| 9 | preq2 4710 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵}) | |
| 10 | 9 | fneq2d 6632 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 Fn {𝐴, 𝐵})) |
| 11 | id 22 | . . . . . 6 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
| 12 | fveq2 6876 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) | |
| 13 | 11, 12 | opeq12d 4857 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝑏, (𝐹‘𝑏)〉 = 〈𝐵, (𝐹‘𝐵)〉) |
| 14 | 13 | preq2d 4716 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉} = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}) |
| 15 | 14 | eqeq2d 2746 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
| 16 | 10, 15 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}) ↔ (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}))) |
| 17 | vex 3463 | . . 3 ⊢ 𝑎 ∈ V | |
| 18 | vex 3463 | . . 3 ⊢ 𝑏 ∈ V | |
| 19 | 17, 18 | fnprb 7200 | . 2 ⊢ (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉}) |
| 20 | 8, 16, 19 | vtocl2g 3553 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cpr 4603 〈cop 4607 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 |
| This theorem is referenced by: fpr2g 7203 |
| Copyright terms: Public domain | W3C validator |