MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnpr2g Structured version   Visualization version   GIF version

Theorem fnpr2g 7247
Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Assertion
Ref Expression
fnpr2g ((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))

Proof of Theorem fnpr2g
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 4758 . . . 4 (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏})
21fneq2d 6673 . . 3 (𝑎 = 𝐴 → (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 Fn {𝐴, 𝑏}))
3 id 22 . . . . . 6 (𝑎 = 𝐴𝑎 = 𝐴)
4 fveq2 6920 . . . . . 6 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
53, 4opeq12d 4905 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, (𝐹𝑎)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
65preq1d 4764 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩})
76eqeq2d 2751 . . 3 (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩}))
82, 7bibi12d 345 . 2 (𝑎 = 𝐴 → ((𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩}) ↔ (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩})))
9 preq2 4759 . . . 4 (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵})
109fneq2d 6673 . . 3 (𝑏 = 𝐵 → (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 Fn {𝐴, 𝐵}))
11 id 22 . . . . . 6 (𝑏 = 𝐵𝑏 = 𝐵)
12 fveq2 6920 . . . . . 6 (𝑏 = 𝐵 → (𝐹𝑏) = (𝐹𝐵))
1311, 12opeq12d 4905 . . . . 5 (𝑏 = 𝐵 → ⟨𝑏, (𝐹𝑏)⟩ = ⟨𝐵, (𝐹𝐵)⟩)
1413preq2d 4765 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
1514eqeq2d 2751 . . 3 (𝑏 = 𝐵 → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
1610, 15bibi12d 345 . 2 (𝑏 = 𝐵 → ((𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩}) ↔ (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))
17 vex 3492 . . 3 𝑎 ∈ V
18 vex 3492 . . 3 𝑏 ∈ V
1917, 18fnprb 7245 . 2 (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩})
208, 16, 19vtocl2g 3586 1 ((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cpr 4650  cop 4654   Fn wfn 6568  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  fpr2g  7248
  Copyright terms: Public domain W3C validator