Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnpr2g | Structured version Visualization version GIF version |
Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.) |
Ref | Expression |
---|---|
fnpr2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4681 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏}) | |
2 | 1 | fneq2d 6579 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 Fn {𝐴, 𝑏})) |
3 | id 22 | . . . . . 6 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
4 | fveq2 6825 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
5 | 3, 4 | opeq12d 4825 | . . . . 5 ⊢ (𝑎 = 𝐴 → 〈𝑎, (𝐹‘𝑎)〉 = 〈𝐴, (𝐹‘𝐴)〉) |
6 | 5 | preq1d 4687 | . . . 4 ⊢ (𝑎 = 𝐴 → {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉} = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}) |
7 | 6 | eqeq2d 2747 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉})) |
8 | 2, 7 | bibi12d 345 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉}) ↔ (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}))) |
9 | preq2 4682 | . . . 4 ⊢ (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵}) | |
10 | 9 | fneq2d 6579 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 Fn {𝐴, 𝐵})) |
11 | id 22 | . . . . . 6 ⊢ (𝑏 = 𝐵 → 𝑏 = 𝐵) | |
12 | fveq2 6825 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) | |
13 | 11, 12 | opeq12d 4825 | . . . . 5 ⊢ (𝑏 = 𝐵 → 〈𝑏, (𝐹‘𝑏)〉 = 〈𝐵, (𝐹‘𝐵)〉) |
14 | 13 | preq2d 4688 | . . . 4 ⊢ (𝑏 = 𝐵 → {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉} = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}) |
15 | 14 | eqeq2d 2747 | . . 3 ⊢ (𝑏 = 𝐵 → (𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
16 | 10, 15 | bibi12d 345 | . 2 ⊢ (𝑏 = 𝐵 → ((𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝑏, (𝐹‘𝑏)〉}) ↔ (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉}))) |
17 | vex 3445 | . . 3 ⊢ 𝑎 ∈ V | |
18 | vex 3445 | . . 3 ⊢ 𝑏 ∈ V | |
19 | 17, 18 | fnprb 7140 | . 2 ⊢ (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉, 〈𝑏, (𝐹‘𝑏)〉}) |
20 | 8, 16, 19 | vtocl2g 3519 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉, 〈𝐵, (𝐹‘𝐵)〉})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {cpr 4575 〈cop 4579 Fn wfn 6474 ‘cfv 6479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 |
This theorem is referenced by: fpr2g 7143 |
Copyright terms: Public domain | W3C validator |