MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnpr2g Structured version   Visualization version   GIF version

Theorem fnpr2g 7068
Description: A function whose domain has at most two elements can be represented as a set of at most two ordered pairs. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Assertion
Ref Expression
fnpr2g ((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))

Proof of Theorem fnpr2g
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 4666 . . . 4 (𝑎 = 𝐴 → {𝑎, 𝑏} = {𝐴, 𝑏})
21fneq2d 6511 . . 3 (𝑎 = 𝐴 → (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 Fn {𝐴, 𝑏}))
3 id 22 . . . . . 6 (𝑎 = 𝐴𝑎 = 𝐴)
4 fveq2 6756 . . . . . 6 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
53, 4opeq12d 4809 . . . . 5 (𝑎 = 𝐴 → ⟨𝑎, (𝐹𝑎)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
65preq1d 4672 . . . 4 (𝑎 = 𝐴 → {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩})
76eqeq2d 2749 . . 3 (𝑎 = 𝐴 → (𝐹 = {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩}))
82, 7bibi12d 345 . 2 (𝑎 = 𝐴 → ((𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩}) ↔ (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩})))
9 preq2 4667 . . . 4 (𝑏 = 𝐵 → {𝐴, 𝑏} = {𝐴, 𝐵})
109fneq2d 6511 . . 3 (𝑏 = 𝐵 → (𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 Fn {𝐴, 𝐵}))
11 id 22 . . . . . 6 (𝑏 = 𝐵𝑏 = 𝐵)
12 fveq2 6756 . . . . . 6 (𝑏 = 𝐵 → (𝐹𝑏) = (𝐹𝐵))
1311, 12opeq12d 4809 . . . . 5 (𝑏 = 𝐵 → ⟨𝑏, (𝐹𝑏)⟩ = ⟨𝐵, (𝐹𝐵)⟩)
1413preq2d 4673 . . . 4 (𝑏 = 𝐵 → {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩} = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})
1514eqeq2d 2749 . . 3 (𝑏 = 𝐵 → (𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
1610, 15bibi12d 345 . 2 (𝑏 = 𝐵 → ((𝐹 Fn {𝐴, 𝑏} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝑏, (𝐹𝑏)⟩}) ↔ (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩})))
17 vex 3426 . . 3 𝑎 ∈ V
18 vex 3426 . . 3 𝑏 ∈ V
1917, 18fnprb 7066 . 2 (𝐹 Fn {𝑎, 𝑏} ↔ 𝐹 = {⟨𝑎, (𝐹𝑎)⟩, ⟨𝑏, (𝐹𝑏)⟩})
208, 16, 19vtocl2g 3500 1 ((𝐴𝑉𝐵𝑊) → (𝐹 Fn {𝐴, 𝐵} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩, ⟨𝐵, (𝐹𝐵)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cpr 4560  cop 4564   Fn wfn 6413  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  fpr2g  7069
  Copyright terms: Public domain W3C validator