MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem3 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem3 27779
Description: Lemma 3 for clwlkclwwlk 27780. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
clwlkclwwlklem3 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
Distinct variable groups:   𝑓,𝐸,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑓,𝑉,𝑖

Proof of Theorem clwlkclwwlklem3
StepHypRef Expression
1 simp1 1132 . . . . . . 7 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸1-1𝑅)
2 simp1 1132 . . . . . . . 8 ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → 𝑓 ∈ Word dom 𝐸)
32adantr 483 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → 𝑓 ∈ Word dom 𝐸)
41, 3anim12i 614 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (𝐸:dom 𝐸1-1𝑅𝑓 ∈ Word dom 𝐸))
5 simp3 1134 . . . . . . 7 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
6 simpl2 1188 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → 𝑃:(0...(♯‘𝑓))⟶𝑉)
75, 6anim12ci 615 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ 2 ≤ (♯‘𝑃)))
8 simp3 1134 . . . . . . . 8 ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
98anim1i 616 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))
109adantl 484 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))
11 clwlkclwwlklem2 27778 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑓 ∈ Word dom 𝐸) ∧ (𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))
124, 7, 10, 11syl3anc 1367 . . . . 5 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))
13 lencl 13883 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
14 lencl 13883 . . . . . . . . . . . 12 (𝑓 ∈ Word dom 𝐸 → (♯‘𝑓) ∈ ℕ0)
15 ffz0hash 13806 . . . . . . . . . . . . . . 15 (((♯‘𝑓) ∈ ℕ0𝑃:(0...(♯‘𝑓))⟶𝑉) → (♯‘𝑃) = ((♯‘𝑓) + 1))
16 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑃) = ((♯‘𝑓) + 1) → ((♯‘𝑃) − 1) = (((♯‘𝑓) + 1) − 1))
1716oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) = ((♯‘𝑓) + 1) → (((♯‘𝑃) − 1) − 0) = ((((♯‘𝑓) + 1) − 1) − 0))
18 nn0cn 11908 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑓) ∈ ℕ0 → (♯‘𝑓) ∈ ℂ)
19 peano2cn 10812 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑓) ∈ ℂ → ((♯‘𝑓) + 1) ∈ ℂ)
20 peano2cnm 10952 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((♯‘𝑓) + 1) ∈ ℂ → (((♯‘𝑓) + 1) − 1) ∈ ℂ)
2118, 19, 203syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑓) ∈ ℕ0 → (((♯‘𝑓) + 1) − 1) ∈ ℂ)
2221subid1d 10986 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑓) ∈ ℕ0 → ((((♯‘𝑓) + 1) − 1) − 0) = (((♯‘𝑓) + 1) − 1))
23 1cnd 10636 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑓) ∈ ℕ0 → 1 ∈ ℂ)
2418, 23pncand 10998 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑓) ∈ ℕ0 → (((♯‘𝑓) + 1) − 1) = (♯‘𝑓))
2522, 24eqtrd 2856 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑓) ∈ ℕ0 → ((((♯‘𝑓) + 1) − 1) − 0) = (♯‘𝑓))
2625adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → ((((♯‘𝑓) + 1) − 1) − 0) = (♯‘𝑓))
2717, 26sylan9eqr 2878 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (((♯‘𝑃) − 1) − 0) = (♯‘𝑓))
2827oveq1d 7171 . . . . . . . . . . . . . . . . . . . . . 22 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑓) − 1))
2928oveq2d 7172 . . . . . . . . . . . . . . . . . . . . 21 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (0..^((((♯‘𝑃) − 1) − 0) − 1)) = (0..^((♯‘𝑓) − 1)))
3029raleqdv 3415 . . . . . . . . . . . . . . . . . . . 20 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
31 oveq1 7163 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) = ((♯‘𝑓) + 1) → ((♯‘𝑃) − 2) = (((♯‘𝑓) + 1) − 2))
32 2cnd 11716 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑓) ∈ ℕ0 → 2 ∈ ℂ)
3318, 32, 23subsub3d 11027 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) − (2 − 1)) = (((♯‘𝑓) + 1) − 2))
34 2m1e1 11764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 − 1) = 1
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑓) ∈ ℕ0 → (2 − 1) = 1)
3635oveq2d 7172 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) − (2 − 1)) = ((♯‘𝑓) − 1))
3733, 36eqtr3d 2858 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑓) ∈ ℕ0 → (((♯‘𝑓) + 1) − 2) = ((♯‘𝑓) − 1))
3837adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (((♯‘𝑓) + 1) − 2) = ((♯‘𝑓) − 1))
3931, 38sylan9eqr 2878 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → ((♯‘𝑃) − 2) = ((♯‘𝑓) − 1))
4039fveq2d 6674 . . . . . . . . . . . . . . . . . . . . . 22 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (𝑃‘((♯‘𝑃) − 2)) = (𝑃‘((♯‘𝑓) − 1)))
4140preq1d 4675 . . . . . . . . . . . . . . . . . . . . 21 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)})
4241eleq1d 2897 . . . . . . . . . . . . . . . . . . . 20 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))
4330, 42anbi12d 632 . . . . . . . . . . . . . . . . . . 19 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))
4443anbi2d 630 . . . . . . . . . . . . . . . . . 18 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
45 3anass 1091 . . . . . . . . . . . . . . . . . 18 (((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))
4644, 45syl6bbr 291 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))
4746expcom 416 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) = ((♯‘𝑓) + 1) → (((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
4847expd 418 . . . . . . . . . . . . . . 15 ((♯‘𝑃) = ((♯‘𝑓) + 1) → ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))
4915, 48syl 17 . . . . . . . . . . . . . 14 (((♯‘𝑓) ∈ ℕ0𝑃:(0...(♯‘𝑓))⟶𝑉) → ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))
5049ex 415 . . . . . . . . . . . . 13 ((♯‘𝑓) ∈ ℕ0 → (𝑃:(0...(♯‘𝑓))⟶𝑉 → ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))))
5150com23 86 . . . . . . . . . . . 12 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) ∈ ℕ0 → (𝑃:(0...(♯‘𝑓))⟶𝑉 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))))
5214, 14, 51sylc 65 . . . . . . . . . . 11 (𝑓 ∈ Word dom 𝐸 → (𝑃:(0...(♯‘𝑓))⟶𝑉 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))
5352imp 409 . . . . . . . . . 10 ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉) → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
54533adant3 1128 . . . . . . . . 9 ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
5554adantr 483 . . . . . . . 8 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
5613, 55syl5com 31 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
57563ad2ant2 1130 . . . . . 6 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
5857imp 409 . . . . 5 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))
5912, 58mpbird 259 . . . 4 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)))
6059ex 415 . . 3 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
6160exlimdv 1934 . 2 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
62 clwlkclwwlklem1 27777 . 2 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6361, 62impbid 214 1 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3138  {cpr 4569   class class class wbr 5066  dom cdm 5555  ran crn 5556  wf 6351  1-1wf1 6352  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   + caddc 10540  cle 10676  cmin 10870  2c2 11693  0cn0 11898  ...cfz 12893  ..^cfzo 13034  chash 13691  Word cword 13862  lastSclsw 13914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-lsw 13915
This theorem is referenced by:  clwlkclwwlk  27780
  Copyright terms: Public domain W3C validator