MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem3 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem3 28365
Description: Lemma 3 for clwlkclwwlk 28366. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
clwlkclwwlklem3 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
Distinct variable groups:   𝑓,𝐸,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑓,𝑉,𝑖

Proof of Theorem clwlkclwwlklem3
StepHypRef Expression
1 simp1 1135 . . . . . . 7 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸1-1𝑅)
2 simp1 1135 . . . . . . . 8 ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → 𝑓 ∈ Word dom 𝐸)
32adantr 481 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → 𝑓 ∈ Word dom 𝐸)
41, 3anim12i 613 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (𝐸:dom 𝐸1-1𝑅𝑓 ∈ Word dom 𝐸))
5 simp3 1137 . . . . . . 7 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
6 simpl2 1191 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → 𝑃:(0...(♯‘𝑓))⟶𝑉)
75, 6anim12ci 614 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ 2 ≤ (♯‘𝑃)))
8 simp3 1137 . . . . . . . 8 ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
98anim1i 615 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))
109adantl 482 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))
11 clwlkclwwlklem2 28364 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑓 ∈ Word dom 𝐸) ∧ (𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))
124, 7, 10, 11syl3anc 1370 . . . . 5 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))
13 lencl 14236 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
14 lencl 14236 . . . . . . . . . . . 12 (𝑓 ∈ Word dom 𝐸 → (♯‘𝑓) ∈ ℕ0)
15 ffz0hash 14159 . . . . . . . . . . . . . . 15 (((♯‘𝑓) ∈ ℕ0𝑃:(0...(♯‘𝑓))⟶𝑉) → (♯‘𝑃) = ((♯‘𝑓) + 1))
16 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑃) = ((♯‘𝑓) + 1) → ((♯‘𝑃) − 1) = (((♯‘𝑓) + 1) − 1))
1716oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) = ((♯‘𝑓) + 1) → (((♯‘𝑃) − 1) − 0) = ((((♯‘𝑓) + 1) − 1) − 0))
18 nn0cn 12243 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑓) ∈ ℕ0 → (♯‘𝑓) ∈ ℂ)
19 peano2cn 11147 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑓) ∈ ℂ → ((♯‘𝑓) + 1) ∈ ℂ)
20 peano2cnm 11287 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((♯‘𝑓) + 1) ∈ ℂ → (((♯‘𝑓) + 1) − 1) ∈ ℂ)
2118, 19, 203syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑓) ∈ ℕ0 → (((♯‘𝑓) + 1) − 1) ∈ ℂ)
2221subid1d 11321 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑓) ∈ ℕ0 → ((((♯‘𝑓) + 1) − 1) − 0) = (((♯‘𝑓) + 1) − 1))
23 1cnd 10970 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑓) ∈ ℕ0 → 1 ∈ ℂ)
2418, 23pncand 11333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑓) ∈ ℕ0 → (((♯‘𝑓) + 1) − 1) = (♯‘𝑓))
2522, 24eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑓) ∈ ℕ0 → ((((♯‘𝑓) + 1) − 1) − 0) = (♯‘𝑓))
2625adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → ((((♯‘𝑓) + 1) − 1) − 0) = (♯‘𝑓))
2717, 26sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (((♯‘𝑃) − 1) − 0) = (♯‘𝑓))
2827oveq1d 7290 . . . . . . . . . . . . . . . . . . . . . 22 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑓) − 1))
2928oveq2d 7291 . . . . . . . . . . . . . . . . . . . . 21 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (0..^((((♯‘𝑃) − 1) − 0) − 1)) = (0..^((♯‘𝑓) − 1)))
3029raleqdv 3348 . . . . . . . . . . . . . . . . . . . 20 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
31 oveq1 7282 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) = ((♯‘𝑓) + 1) → ((♯‘𝑃) − 2) = (((♯‘𝑓) + 1) − 2))
32 2cnd 12051 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑓) ∈ ℕ0 → 2 ∈ ℂ)
3318, 32, 23subsub3d 11362 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) − (2 − 1)) = (((♯‘𝑓) + 1) − 2))
34 2m1e1 12099 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 − 1) = 1
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑓) ∈ ℕ0 → (2 − 1) = 1)
3635oveq2d 7291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) − (2 − 1)) = ((♯‘𝑓) − 1))
3733, 36eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑓) ∈ ℕ0 → (((♯‘𝑓) + 1) − 2) = ((♯‘𝑓) − 1))
3837adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (((♯‘𝑓) + 1) − 2) = ((♯‘𝑓) − 1))
3931, 38sylan9eqr 2800 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → ((♯‘𝑃) − 2) = ((♯‘𝑓) − 1))
4039fveq2d 6778 . . . . . . . . . . . . . . . . . . . . . 22 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (𝑃‘((♯‘𝑃) − 2)) = (𝑃‘((♯‘𝑓) − 1)))
4140preq1d 4675 . . . . . . . . . . . . . . . . . . . . 21 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)})
4241eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))
4330, 42anbi12d 631 . . . . . . . . . . . . . . . . . . 19 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))
4443anbi2d 629 . . . . . . . . . . . . . . . . . 18 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
45 3anass 1094 . . . . . . . . . . . . . . . . . 18 (((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))
4644, 45bitr4di 289 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))
4746expcom 414 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) = ((♯‘𝑓) + 1) → (((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
4847expd 416 . . . . . . . . . . . . . . 15 ((♯‘𝑃) = ((♯‘𝑓) + 1) → ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))
4915, 48syl 17 . . . . . . . . . . . . . 14 (((♯‘𝑓) ∈ ℕ0𝑃:(0...(♯‘𝑓))⟶𝑉) → ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))
5049ex 413 . . . . . . . . . . . . 13 ((♯‘𝑓) ∈ ℕ0 → (𝑃:(0...(♯‘𝑓))⟶𝑉 → ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))))
5150com23 86 . . . . . . . . . . . 12 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) ∈ ℕ0 → (𝑃:(0...(♯‘𝑓))⟶𝑉 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))))
5214, 14, 51sylc 65 . . . . . . . . . . 11 (𝑓 ∈ Word dom 𝐸 → (𝑃:(0...(♯‘𝑓))⟶𝑉 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))
5352imp 407 . . . . . . . . . 10 ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉) → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
54533adant3 1131 . . . . . . . . 9 ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
5554adantr 481 . . . . . . . 8 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
5613, 55syl5com 31 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
57563ad2ant2 1133 . . . . . 6 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
5857imp 407 . . . . 5 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))
5912, 58mpbird 256 . . . 4 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)))
6059ex 413 . . 3 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
6160exlimdv 1936 . 2 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
62 clwlkclwwlklem1 28363 . 2 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6361, 62impbid 211 1 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wral 3064  {cpr 4563   class class class wbr 5074  dom cdm 5589  ran crn 5590  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874  cle 11010  cmin 11205  2c2 12028  0cn0 12233  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217  lastSclsw 14265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266
This theorem is referenced by:  clwlkclwwlk  28366
  Copyright terms: Public domain W3C validator