MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem3 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem3 27228
Description: Lemma 3 for clwlkclwwlk 27229. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
clwlkclwwlklem3 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
Distinct variable groups:   𝑓,𝐸,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑓,𝑉,𝑖

Proof of Theorem clwlkclwwlklem3
StepHypRef Expression
1 simp1 1166 . . . . . . 7 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸1-1𝑅)
2 simp1 1166 . . . . . . . 8 ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → 𝑓 ∈ Word dom 𝐸)
32adantr 472 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → 𝑓 ∈ Word dom 𝐸)
41, 3anim12i 606 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (𝐸:dom 𝐸1-1𝑅𝑓 ∈ Word dom 𝐸))
5 simp3 1168 . . . . . . 7 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
6 simpl2 1244 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → 𝑃:(0...(♯‘𝑓))⟶𝑉)
75, 6anim12ci 607 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ 2 ≤ (♯‘𝑃)))
8 simp3 1168 . . . . . . . 8 ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
98anim1i 608 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))
109adantl 473 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))
11 clwlkclwwlklem2 27227 . . . . . 6 (((𝐸:dom 𝐸1-1𝑅𝑓 ∈ Word dom 𝐸) ∧ (𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))
124, 7, 10, 11syl3anc 1490 . . . . 5 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))
13 lencl 13505 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
14 lencl 13505 . . . . . . . . . . . 12 (𝑓 ∈ Word dom 𝐸 → (♯‘𝑓) ∈ ℕ0)
15 ffz0hash 13432 . . . . . . . . . . . . . . 15 (((♯‘𝑓) ∈ ℕ0𝑃:(0...(♯‘𝑓))⟶𝑉) → (♯‘𝑃) = ((♯‘𝑓) + 1))
16 oveq1 6849 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑃) = ((♯‘𝑓) + 1) → ((♯‘𝑃) − 1) = (((♯‘𝑓) + 1) − 1))
1716oveq1d 6857 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) = ((♯‘𝑓) + 1) → (((♯‘𝑃) − 1) − 0) = ((((♯‘𝑓) + 1) − 1) − 0))
18 nn0cn 11549 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑓) ∈ ℕ0 → (♯‘𝑓) ∈ ℂ)
19 peano2cn 10462 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝑓) ∈ ℂ → ((♯‘𝑓) + 1) ∈ ℂ)
20 peano2cnm 10601 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((♯‘𝑓) + 1) ∈ ℂ → (((♯‘𝑓) + 1) − 1) ∈ ℂ)
2118, 19, 203syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑓) ∈ ℕ0 → (((♯‘𝑓) + 1) − 1) ∈ ℂ)
2221subid1d 10635 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑓) ∈ ℕ0 → ((((♯‘𝑓) + 1) − 1) − 0) = (((♯‘𝑓) + 1) − 1))
23 1cnd 10288 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑓) ∈ ℕ0 → 1 ∈ ℂ)
2418, 23pncand 10647 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑓) ∈ ℕ0 → (((♯‘𝑓) + 1) − 1) = (♯‘𝑓))
2522, 24eqtrd 2799 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑓) ∈ ℕ0 → ((((♯‘𝑓) + 1) − 1) − 0) = (♯‘𝑓))
2625adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → ((((♯‘𝑓) + 1) − 1) − 0) = (♯‘𝑓))
2717, 26sylan9eqr 2821 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (((♯‘𝑃) − 1) − 0) = (♯‘𝑓))
2827oveq1d 6857 . . . . . . . . . . . . . . . . . . . . . 22 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → ((((♯‘𝑃) − 1) − 0) − 1) = ((♯‘𝑓) − 1))
2928oveq2d 6858 . . . . . . . . . . . . . . . . . . . . 21 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (0..^((((♯‘𝑃) − 1) − 0) − 1)) = (0..^((♯‘𝑓) − 1)))
3029raleqdv 3292 . . . . . . . . . . . . . . . . . . . 20 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
31 oveq1 6849 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝑃) = ((♯‘𝑓) + 1) → ((♯‘𝑃) − 2) = (((♯‘𝑓) + 1) − 2))
32 2cnd 11350 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑓) ∈ ℕ0 → 2 ∈ ℂ)
3318, 32, 23subsub3d 10676 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) − (2 − 1)) = (((♯‘𝑓) + 1) − 2))
34 2m1e1 11405 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 − 1) = 1
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝑓) ∈ ℕ0 → (2 − 1) = 1)
3635oveq2d 6858 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) − (2 − 1)) = ((♯‘𝑓) − 1))
3733, 36eqtr3d 2801 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑓) ∈ ℕ0 → (((♯‘𝑓) + 1) − 2) = ((♯‘𝑓) − 1))
3837adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (((♯‘𝑓) + 1) − 2) = ((♯‘𝑓) − 1))
3931, 38sylan9eqr 2821 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → ((♯‘𝑃) − 2) = ((♯‘𝑓) − 1))
4039fveq2d 6379 . . . . . . . . . . . . . . . . . . . . . 22 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (𝑃‘((♯‘𝑃) − 2)) = (𝑃‘((♯‘𝑓) − 1)))
4140preq1d 4429 . . . . . . . . . . . . . . . . . . . . 21 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)})
4241eleq1d 2829 . . . . . . . . . . . . . . . . . . . 20 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))
4330, 42anbi12d 624 . . . . . . . . . . . . . . . . . . 19 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → ((∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))
4443anbi2d 622 . . . . . . . . . . . . . . . . . 18 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
45 3anass 1116 . . . . . . . . . . . . . . . . . 18 (((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))
4644, 45syl6bbr 280 . . . . . . . . . . . . . . . . 17 ((((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝑓) + 1)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))
4746expcom 402 . . . . . . . . . . . . . . . 16 ((♯‘𝑃) = ((♯‘𝑓) + 1) → (((♯‘𝑓) ∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
4847expd 404 . . . . . . . . . . . . . . 15 ((♯‘𝑃) = ((♯‘𝑓) + 1) → ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))
4915, 48syl 17 . . . . . . . . . . . . . 14 (((♯‘𝑓) ∈ ℕ0𝑃:(0...(♯‘𝑓))⟶𝑉) → ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))
5049ex 401 . . . . . . . . . . . . 13 ((♯‘𝑓) ∈ ℕ0 → (𝑃:(0...(♯‘𝑓))⟶𝑉 → ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))))
5150com23 86 . . . . . . . . . . . 12 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) ∈ ℕ0 → (𝑃:(0...(♯‘𝑓))⟶𝑉 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))))
5214, 14, 51sylc 65 . . . . . . . . . . 11 (𝑓 ∈ Word dom 𝐸 → (𝑃:(0...(♯‘𝑓))⟶𝑉 → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))
5352imp 395 . . . . . . . . . 10 ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉) → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
54533adant3 1162 . . . . . . . . 9 ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
5554adantr 472 . . . . . . . 8 (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → ((♯‘𝑃) ∈ ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
5613, 55syl5com 31 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
57563ad2ant2 1164 . . . . . 6 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
5857imp 395 . . . . 5 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))
5912, 58mpbird 248 . . . 4 (((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)))
6059ex 401 . . 3 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
6160exlimdv 2028 . 2 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
62 clwlkclwwlklem1 27226 . 2 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))))
6361, 62impbid 203 1 ((𝐸:dom 𝐸1-1𝑅𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wral 3055  {cpr 4336   class class class wbr 4809  dom cdm 5277  ran crn 5278  wf 6064  1-1wf1 6065  cfv 6068  (class class class)co 6842  cc 10187  0cc0 10189  1c1 10190   + caddc 10192  cle 10329  cmin 10520  2c2 11327  0cn0 11538  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13486  lastSclsw 13533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13487  df-lsw 13534
This theorem is referenced by:  clwlkclwwlk  27229  clwlkclwwlkOLD  27230
  Copyright terms: Public domain W3C validator