MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem3 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem3 29522
Description: Lemma 3 for clwlkclwwlk 29523. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
clwlkclwwlklem3 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (βˆƒπ‘“((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))
Distinct variable groups:   𝑓,𝐸,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑓,𝑉,𝑖

Proof of Theorem clwlkclwwlklem3
StepHypRef Expression
1 simp1 1135 . . . . . . 7 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ 𝐸:dom 𝐸–1-1→𝑅)
2 simp1 1135 . . . . . . . 8 ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ 𝑓 ∈ Word dom 𝐸)
32adantr 480 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))) β†’ 𝑓 ∈ Word dom 𝐸)
41, 3anim12i 612 . . . . . 6 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))) β†’ (𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑓 ∈ Word dom 𝐸))
5 simp3 1137 . . . . . . 7 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ 2 ≀ (β™―β€˜π‘ƒ))
6 simpl2 1191 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))) β†’ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰)
75, 6anim12ci 613 . . . . . 6 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))) β†’ (𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ 2 ≀ (β™―β€˜π‘ƒ)))
8 simp3 1137 . . . . . . . 8 ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))})
98anim1i 614 . . . . . . 7 (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))) β†’ (βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))))
109adantl 481 . . . . . 6 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))) β†’ (βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))))
11 clwlkclwwlklem2 29521 . . . . . 6 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑓 ∈ Word dom 𝐸) ∧ (𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ (βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))) β†’ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸))
124, 7, 10, 11syl3anc 1370 . . . . 5 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))) β†’ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸))
13 lencl 14488 . . . . . . . 8 (𝑃 ∈ Word 𝑉 β†’ (β™―β€˜π‘ƒ) ∈ β„•0)
14 lencl 14488 . . . . . . . . . . . 12 (𝑓 ∈ Word dom 𝐸 β†’ (β™―β€˜π‘“) ∈ β„•0)
15 ffz0hash 14411 . . . . . . . . . . . . . . 15 (((β™―β€˜π‘“) ∈ β„•0 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰) β†’ (β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1))
16 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1) β†’ ((β™―β€˜π‘ƒ) βˆ’ 1) = (((β™―β€˜π‘“) + 1) βˆ’ 1))
1716oveq1d 7427 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1) β†’ (((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) = ((((β™―β€˜π‘“) + 1) βˆ’ 1) βˆ’ 0))
18 nn0cn 12487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((β™―β€˜π‘“) ∈ β„•0 β†’ (β™―β€˜π‘“) ∈ β„‚)
19 peano2cn 11391 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((β™―β€˜π‘“) ∈ β„‚ β†’ ((β™―β€˜π‘“) + 1) ∈ β„‚)
20 peano2cnm 11531 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((β™―β€˜π‘“) + 1) ∈ β„‚ β†’ (((β™―β€˜π‘“) + 1) βˆ’ 1) ∈ β„‚)
2118, 19, 203syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((β™―β€˜π‘“) ∈ β„•0 β†’ (((β™―β€˜π‘“) + 1) βˆ’ 1) ∈ β„‚)
2221subid1d 11565 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((β™―β€˜π‘“) ∈ β„•0 β†’ ((((β™―β€˜π‘“) + 1) βˆ’ 1) βˆ’ 0) = (((β™―β€˜π‘“) + 1) βˆ’ 1))
23 1cnd 11214 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((β™―β€˜π‘“) ∈ β„•0 β†’ 1 ∈ β„‚)
2418, 23pncand 11577 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((β™―β€˜π‘“) ∈ β„•0 β†’ (((β™―β€˜π‘“) + 1) βˆ’ 1) = (β™―β€˜π‘“))
2522, 24eqtrd 2771 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β™―β€˜π‘“) ∈ β„•0 β†’ ((((β™―β€˜π‘“) + 1) βˆ’ 1) βˆ’ 0) = (β™―β€˜π‘“))
2625adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ ((((β™―β€˜π‘“) + 1) βˆ’ 1) βˆ’ 0) = (β™―β€˜π‘“))
2717, 26sylan9eqr 2793 . . . . . . . . . . . . . . . . . . . . . . 23 ((((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ (β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1)) β†’ (((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) = (β™―β€˜π‘“))
2827oveq1d 7427 . . . . . . . . . . . . . . . . . . . . . 22 ((((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ (β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1)) β†’ ((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1) = ((β™―β€˜π‘“) βˆ’ 1))
2928oveq2d 7428 . . . . . . . . . . . . . . . . . . . . 21 ((((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ (β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1)) β†’ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)) = (0..^((β™―β€˜π‘“) βˆ’ 1)))
3029raleqdv 3324 . . . . . . . . . . . . . . . . . . . 20 ((((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ (β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1)) β†’ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ↔ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸))
31 oveq1 7419 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1) β†’ ((β™―β€˜π‘ƒ) βˆ’ 2) = (((β™―β€˜π‘“) + 1) βˆ’ 2))
32 2cnd 12295 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((β™―β€˜π‘“) ∈ β„•0 β†’ 2 ∈ β„‚)
3318, 32, 23subsub3d 11606 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((β™―β€˜π‘“) ∈ β„•0 β†’ ((β™―β€˜π‘“) βˆ’ (2 βˆ’ 1)) = (((β™―β€˜π‘“) + 1) βˆ’ 2))
34 2m1e1 12343 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (2 βˆ’ 1) = 1
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((β™―β€˜π‘“) ∈ β„•0 β†’ (2 βˆ’ 1) = 1)
3635oveq2d 7428 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((β™―β€˜π‘“) ∈ β„•0 β†’ ((β™―β€˜π‘“) βˆ’ (2 βˆ’ 1)) = ((β™―β€˜π‘“) βˆ’ 1))
3733, 36eqtr3d 2773 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β™―β€˜π‘“) ∈ β„•0 β†’ (((β™―β€˜π‘“) + 1) βˆ’ 2) = ((β™―β€˜π‘“) βˆ’ 1))
3837adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ (((β™―β€˜π‘“) + 1) βˆ’ 2) = ((β™―β€˜π‘“) βˆ’ 1))
3931, 38sylan9eqr 2793 . . . . . . . . . . . . . . . . . . . . . . 23 ((((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ (β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1)) β†’ ((β™―β€˜π‘ƒ) βˆ’ 2) = ((β™―β€˜π‘“) βˆ’ 1))
4039fveq2d 6895 . . . . . . . . . . . . . . . . . . . . . 22 ((((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ (β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1)) β†’ (π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)) = (π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)))
4140preq1d 4743 . . . . . . . . . . . . . . . . . . . . 21 ((((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ (β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1)) β†’ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} = {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)})
4241eleq1d 2817 . . . . . . . . . . . . . . . . . . . 20 ((((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ (β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1)) β†’ ({(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸 ↔ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸))
4330, 42anbi12d 630 . . . . . . . . . . . . . . . . . . 19 ((((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ (β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1)) β†’ ((βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸) ↔ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸)))
4443anbi2d 628 . . . . . . . . . . . . . . . . . 18 ((((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ (β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1)) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))
45 3anass 1094 . . . . . . . . . . . . . . . . . 18 (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸)))
4644, 45bitr4di 289 . . . . . . . . . . . . . . . . 17 ((((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) ∧ (β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1)) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸)))
4746expcom 413 . . . . . . . . . . . . . . . 16 ((β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1) β†’ (((β™―β€˜π‘“) ∈ β„•0 ∧ (β™―β€˜π‘ƒ) ∈ β„•0) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))
4847expd 415 . . . . . . . . . . . . . . 15 ((β™―β€˜π‘ƒ) = ((β™―β€˜π‘“) + 1) β†’ ((β™―β€˜π‘“) ∈ β„•0 β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸)))))
4915, 48syl 17 . . . . . . . . . . . . . 14 (((β™―β€˜π‘“) ∈ β„•0 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰) β†’ ((β™―β€˜π‘“) ∈ β„•0 β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸)))))
5049ex 412 . . . . . . . . . . . . 13 ((β™―β€˜π‘“) ∈ β„•0 β†’ (𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ β†’ ((β™―β€˜π‘“) ∈ β„•0 β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))))
5150com23 86 . . . . . . . . . . . 12 ((β™―β€˜π‘“) ∈ β„•0 β†’ ((β™―β€˜π‘“) ∈ β„•0 β†’ (𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))))
5214, 14, 51sylc 65 . . . . . . . . . . 11 (𝑓 ∈ Word dom 𝐸 β†’ (𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸)))))
5352imp 406 . . . . . . . . . 10 ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))
54533adant3 1131 . . . . . . . . 9 ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))
5554adantr 480 . . . . . . . 8 (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))) β†’ ((β™―β€˜π‘ƒ) ∈ β„•0 β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))
5613, 55syl5com 31 . . . . . . 7 (𝑃 ∈ Word 𝑉 β†’ (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))
57563ad2ant2 1133 . . . . . 6 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))
5857imp 406 . . . . 5 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ βˆ€π‘– ∈ (0..^((β™―β€˜π‘“) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘“) βˆ’ 1)), (π‘ƒβ€˜0)} ∈ ran 𝐸)))
5912, 58mpbird 257 . . . 4 (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) ∧ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))) β†’ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)))
6059ex 412 . . 3 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))) β†’ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))
6160exlimdv 1935 . 2 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (βˆƒπ‘“((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))) β†’ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))
62 clwlkclwwlklem1 29520 . 2 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸)) β†’ βˆƒπ‘“((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“)))))
6361, 62impbid 211 1 ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≀ (β™―β€˜π‘ƒ)) β†’ (βˆƒπ‘“((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(β™―β€˜π‘“))βŸΆπ‘‰ ∧ βˆ€π‘– ∈ (0..^(β™―β€˜π‘“))(πΈβ€˜(π‘“β€˜π‘–)) = {(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜π‘“))) ↔ ((lastSβ€˜π‘ƒ) = (π‘ƒβ€˜0) ∧ (βˆ€π‘– ∈ (0..^((((β™―β€˜π‘ƒ) βˆ’ 1) βˆ’ 0) βˆ’ 1)){(π‘ƒβ€˜π‘–), (π‘ƒβ€˜(𝑖 + 1))} ∈ ran 𝐸 ∧ {(π‘ƒβ€˜((β™―β€˜π‘ƒ) βˆ’ 2)), (π‘ƒβ€˜0)} ∈ ran 𝐸))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540  βˆƒwex 1780   ∈ wcel 2105  βˆ€wral 3060  {cpr 4630   class class class wbr 5148  dom cdm 5676  ran crn 5677  βŸΆwf 6539  β€“1-1β†’wf1 6540  β€˜cfv 6543  (class class class)co 7412  β„‚cc 11112  0cc0 11114  1c1 11115   + caddc 11117   ≀ cle 11254   βˆ’ cmin 11449  2c2 12272  β„•0cn0 12477  ...cfz 13489  ..^cfzo 13632  β™―chash 14295  Word cword 14469  lastSclsw 14517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-hash 14296  df-word 14470  df-lsw 14518
This theorem is referenced by:  clwlkclwwlk  29523
  Copyright terms: Public domain W3C validator