Proof of Theorem clwlkclwwlklem3
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . . . . . 7
⊢ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 𝐸:dom 𝐸–1-1→𝑅) |
2 | | simp1 1134 |
. . . . . . . 8
⊢ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → 𝑓 ∈ Word dom 𝐸) |
3 | 2 | adantr 480 |
. . . . . . 7
⊢ (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → 𝑓 ∈ Word dom 𝐸) |
4 | 1, 3 | anim12i 612 |
. . . . . 6
⊢ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑓 ∈ Word dom 𝐸)) |
5 | | simp3 1136 |
. . . . . . 7
⊢ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤
(♯‘𝑃)) |
6 | | simpl2 1190 |
. . . . . . 7
⊢ (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → 𝑃:(0...(♯‘𝑓))⟶𝑉) |
7 | 5, 6 | anim12ci 613 |
. . . . . 6
⊢ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ 2 ≤ (♯‘𝑃))) |
8 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
9 | 8 | anim1i 614 |
. . . . . . 7
⊢ (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) |
10 | 9 | adantl 481 |
. . . . . 6
⊢ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) |
11 | | clwlkclwwlklem2 28265 |
. . . . . 6
⊢ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑓 ∈ Word dom 𝐸) ∧ (𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (∀𝑖 ∈
(0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)) |
12 | 4, 7, 10, 11 | syl3anc 1369 |
. . . . 5
⊢ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)) |
13 | | lencl 14164 |
. . . . . . . 8
⊢ (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈
ℕ0) |
14 | | lencl 14164 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ Word dom 𝐸 → (♯‘𝑓) ∈
ℕ0) |
15 | | ffz0hash 14087 |
. . . . . . . . . . . . . . 15
⊢
(((♯‘𝑓)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉) → (♯‘𝑃) = ((♯‘𝑓) + 1)) |
16 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((♯‘𝑃) =
((♯‘𝑓) + 1)
→ ((♯‘𝑃)
− 1) = (((♯‘𝑓) + 1) − 1)) |
17 | 16 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((♯‘𝑃) =
((♯‘𝑓) + 1)
→ (((♯‘𝑃)
− 1) − 0) = ((((♯‘𝑓) + 1) − 1) −
0)) |
18 | | nn0cn 12173 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((♯‘𝑓)
∈ ℕ0 → (♯‘𝑓) ∈ ℂ) |
19 | | peano2cn 11077 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((♯‘𝑓)
∈ ℂ → ((♯‘𝑓) + 1) ∈ ℂ) |
20 | | peano2cnm 11217 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((♯‘𝑓)
+ 1) ∈ ℂ → (((♯‘𝑓) + 1) − 1) ∈
ℂ) |
21 | 18, 19, 20 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((♯‘𝑓)
∈ ℕ0 → (((♯‘𝑓) + 1) − 1) ∈
ℂ) |
22 | 21 | subid1d 11251 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((♯‘𝑓)
∈ ℕ0 → ((((♯‘𝑓) + 1) − 1) − 0) =
(((♯‘𝑓) + 1)
− 1)) |
23 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((♯‘𝑓)
∈ ℕ0 → 1 ∈ ℂ) |
24 | 18, 23 | pncand 11263 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((♯‘𝑓)
∈ ℕ0 → (((♯‘𝑓) + 1) − 1) = (♯‘𝑓)) |
25 | 22, 24 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((♯‘𝑓)
∈ ℕ0 → ((((♯‘𝑓) + 1) − 1) − 0) =
(♯‘𝑓)) |
26 | 25 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) →
((((♯‘𝑓) + 1)
− 1) − 0) = (♯‘𝑓)) |
27 | 17, 26 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧
(♯‘𝑃) =
((♯‘𝑓) + 1))
→ (((♯‘𝑃)
− 1) − 0) = (♯‘𝑓)) |
28 | 27 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧
(♯‘𝑃) =
((♯‘𝑓) + 1))
→ ((((♯‘𝑃)
− 1) − 0) − 1) = ((♯‘𝑓) − 1)) |
29 | 28 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧
(♯‘𝑃) =
((♯‘𝑓) + 1))
→ (0..^((((♯‘𝑃) − 1) − 0) − 1)) =
(0..^((♯‘𝑓)
− 1))) |
30 | 29 | raleqdv 3339 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧
(♯‘𝑃) =
((♯‘𝑓) + 1))
→ (∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)) |
31 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((♯‘𝑃) =
((♯‘𝑓) + 1)
→ ((♯‘𝑃)
− 2) = (((♯‘𝑓) + 1) − 2)) |
32 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((♯‘𝑓)
∈ ℕ0 → 2 ∈ ℂ) |
33 | 18, 32, 23 | subsub3d 11292 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((♯‘𝑓)
∈ ℕ0 → ((♯‘𝑓) − (2 − 1)) =
(((♯‘𝑓) + 1)
− 2)) |
34 | | 2m1e1 12029 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (2
− 1) = 1 |
35 | 34 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((♯‘𝑓)
∈ ℕ0 → (2 − 1) = 1) |
36 | 35 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((♯‘𝑓)
∈ ℕ0 → ((♯‘𝑓) − (2 − 1)) =
((♯‘𝑓) −
1)) |
37 | 33, 36 | eqtr3d 2780 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((♯‘𝑓)
∈ ℕ0 → (((♯‘𝑓) + 1) − 2) = ((♯‘𝑓) − 1)) |
38 | 37 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) →
(((♯‘𝑓) + 1)
− 2) = ((♯‘𝑓) − 1)) |
39 | 31, 38 | sylan9eqr 2801 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧
(♯‘𝑃) =
((♯‘𝑓) + 1))
→ ((♯‘𝑃)
− 2) = ((♯‘𝑓) − 1)) |
40 | 39 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧
(♯‘𝑃) =
((♯‘𝑓) + 1))
→ (𝑃‘((♯‘𝑃) − 2)) = (𝑃‘((♯‘𝑓) − 1))) |
41 | 40 | preq1d 4672 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧
(♯‘𝑃) =
((♯‘𝑓) + 1))
→ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} = {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)}) |
42 | 41 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧
(♯‘𝑃) =
((♯‘𝑓) + 1))
→ ({(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)) |
43 | 30, 42 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧
(♯‘𝑃) =
((♯‘𝑓) + 1))
→ ((∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸) ↔ (∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))) |
44 | 43 | anbi2d 628 |
. . . . . . . . . . . . . . . . . 18
⊢
((((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧
(♯‘𝑃) =
((♯‘𝑓) + 1))
→ (((lastS‘𝑃) =
(𝑃‘0) ∧
(∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))) |
45 | | 3anass 1093 |
. . . . . . . . . . . . . . . . . 18
⊢
(((lastS‘𝑃) =
(𝑃‘0) ∧
∀𝑖 ∈
(0..^((♯‘𝑓)
− 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))) |
46 | 44, 45 | bitr4di 288 |
. . . . . . . . . . . . . . . . 17
⊢
((((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) ∧
(♯‘𝑃) =
((♯‘𝑓) + 1))
→ (((lastS‘𝑃) =
(𝑃‘0) ∧
(∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))) |
47 | 46 | expcom 413 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑃) =
((♯‘𝑓) + 1)
→ (((♯‘𝑓)
∈ ℕ0 ∧ (♯‘𝑃) ∈ ℕ0) →
(((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))) |
48 | 47 | expd 415 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑃) =
((♯‘𝑓) + 1)
→ ((♯‘𝑓)
∈ ℕ0 → ((♯‘𝑃) ∈ ℕ0 →
(((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))) |
49 | 15, 48 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝑓)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉) → ((♯‘𝑓) ∈ ℕ0 →
((♯‘𝑃) ∈
ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))) |
50 | 49 | ex 412 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑓)
∈ ℕ0 → (𝑃:(0...(♯‘𝑓))⟶𝑉 → ((♯‘𝑓) ∈ ℕ0 →
((♯‘𝑃) ∈
ℕ0 → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))) |
51 | 50 | com23 86 |
. . . . . . . . . . . 12
⊢
((♯‘𝑓)
∈ ℕ0 → ((♯‘𝑓) ∈ ℕ0 → (𝑃:(0...(♯‘𝑓))⟶𝑉 → ((♯‘𝑃) ∈ ℕ0 →
(((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))) |
52 | 14, 14, 51 | sylc 65 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ Word dom 𝐸 → (𝑃:(0...(♯‘𝑓))⟶𝑉 → ((♯‘𝑃) ∈ ℕ0 →
(((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))))) |
53 | 52 | imp 406 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉) → ((♯‘𝑃) ∈ ℕ0 →
(((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))) |
54 | 53 | 3adant3 1130 |
. . . . . . . . 9
⊢ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((♯‘𝑃) ∈ ℕ0
→ (((lastS‘𝑃) =
(𝑃‘0) ∧
(∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))) |
55 | 54 | adantr 480 |
. . . . . . . 8
⊢ (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → ((♯‘𝑃) ∈ ℕ0 →
(((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈
(0..^((((♯‘𝑃)
− 1) − 0) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))) |
56 | 13, 55 | syl5com 31 |
. . . . . . 7
⊢ (𝑃 ∈ Word 𝑉 → (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))) |
57 | 56 | 3ad2ant2 1132 |
. . . . . 6
⊢ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸)))) |
58 | 57 | imp 406 |
. . . . 5
⊢ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝑓) − 1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑓) − 1)), (𝑃‘0)} ∈ ran 𝐸))) |
59 | 12, 58 | mpbird 256 |
. . . 4
⊢ (((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ ((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸))) |
60 | 59 | ex 412 |
. . 3
⊢ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)))) |
61 | 60 | exlimdv 1937 |
. 2
⊢ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) → ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)))) |
62 | | clwlkclwwlklem1 28264 |
. 2
⊢ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)) → ∃𝑓((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))))) |
63 | 61, 62 | impbid 211 |
1
⊢ ((𝐸:dom 𝐸–1-1→𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ (♯‘𝑃)) → (∃𝑓((𝑓 ∈ Word dom 𝐸 ∧ 𝑃:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝑓))(𝐸‘(𝑓‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) ∧ (𝑃‘0) = (𝑃‘(♯‘𝑓))) ↔ ((lastS‘𝑃) = (𝑃‘0) ∧ (∀𝑖 ∈ (0..^((((♯‘𝑃) − 1) − 0) −
1)){(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)} ∈ ran 𝐸)))) |