Step | Hyp | Ref
| Expression |
1 | | 1nn 11984 |
. . 3
⊢ 1 ∈
ℕ |
2 | | eqid 2738 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
3 | | eqid 2738 |
. . . 4
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
4 | 2, 3 | isclwwlknx 28400 |
. . 3
⊢ (1 ∈
ℕ → (𝑊 ∈ (1
ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1))) |
5 | 1, 4 | ax-mp 5 |
. 2
⊢ (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1)) |
6 | | 3anass 1094 |
. . . 4
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))) |
7 | | ral0 4443 |
. . . . . . . 8
⊢
∀𝑖 ∈
∅ {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) |
8 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢
((♯‘𝑊) =
1 → ((♯‘𝑊)
− 1) = (1 − 1)) |
9 | | 1m1e0 12045 |
. . . . . . . . . . . . 13
⊢ (1
− 1) = 0 |
10 | 8, 9 | eqtrdi 2794 |
. . . . . . . . . . . 12
⊢
((♯‘𝑊) =
1 → ((♯‘𝑊)
− 1) = 0) |
11 | 10 | oveq2d 7291 |
. . . . . . . . . . 11
⊢
((♯‘𝑊) =
1 → (0..^((♯‘𝑊) − 1)) = (0..^0)) |
12 | | fzo0 13411 |
. . . . . . . . . . 11
⊢ (0..^0) =
∅ |
13 | 11, 12 | eqtrdi 2794 |
. . . . . . . . . 10
⊢
((♯‘𝑊) =
1 → (0..^((♯‘𝑊) − 1)) = ∅) |
14 | 13 | raleqdv 3348 |
. . . . . . . . 9
⊢
((♯‘𝑊) =
1 → (∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ∅ {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
15 | 14 | adantr 481 |
. . . . . . . 8
⊢
(((♯‘𝑊)
= 1 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
(∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ∅ {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
16 | 7, 15 | mpbiri 257 |
. . . . . . 7
⊢
(((♯‘𝑊)
= 1 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
17 | 16 | biantrurd 533 |
. . . . . 6
⊢
(((♯‘𝑊)
= 1 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
({(lastS‘𝑊), (𝑊‘0)} ∈
(Edg‘𝐺) ↔
(∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))) |
18 | | lsw1 14270 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → (lastS‘𝑊) = (𝑊‘0)) |
19 | 18 | ancoms 459 |
. . . . . . . . 9
⊢
(((♯‘𝑊)
= 1 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
(lastS‘𝑊) = (𝑊‘0)) |
20 | 19 | preq1d 4675 |
. . . . . . . 8
⊢
(((♯‘𝑊)
= 1 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
{(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (𝑊‘0)}) |
21 | | dfsn2 4574 |
. . . . . . . 8
⊢ {(𝑊‘0)} = {(𝑊‘0), (𝑊‘0)} |
22 | 20, 21 | eqtr4di 2796 |
. . . . . . 7
⊢
(((♯‘𝑊)
= 1 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
{(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0)}) |
23 | 22 | eleq1d 2823 |
. . . . . 6
⊢
(((♯‘𝑊)
= 1 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
({(lastS‘𝑊), (𝑊‘0)} ∈
(Edg‘𝐺) ↔
{(𝑊‘0)} ∈
(Edg‘𝐺))) |
24 | 17, 23 | bitr3d 280 |
. . . . 5
⊢
(((♯‘𝑊)
= 1 ∧ 𝑊 ∈ Word
(Vtx‘𝐺)) →
((∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0)} ∈ (Edg‘𝐺))) |
25 | 24 | pm5.32da 579 |
. . . 4
⊢
((♯‘𝑊) =
1 → ((𝑊 ∈ Word
(Vtx‘𝐺) ∧
(∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))) |
26 | 6, 25 | syl5bb 283 |
. . 3
⊢
((♯‘𝑊) =
1 → ((𝑊 ∈ Word
(Vtx‘𝐺) ∧
∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))) |
27 | 26 | pm5.32ri 576 |
. 2
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈
(0..^((♯‘𝑊)
− 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1)) |
28 | | 3anass 1094 |
. . 3
⊢
(((♯‘𝑊)
= 1 ∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧ {(𝑊‘0)} ∈
(Edg‘𝐺)) ↔
((♯‘𝑊) = 1
∧ (𝑊 ∈ Word
(Vtx‘𝐺) ∧ {(𝑊‘0)} ∈
(Edg‘𝐺)))) |
29 | | ancom 461 |
. . 3
⊢
(((♯‘𝑊)
= 1 ∧ (𝑊 ∈ Word
(Vtx‘𝐺) ∧ {(𝑊‘0)} ∈
(Edg‘𝐺))) ↔
((𝑊 ∈ Word
(Vtx‘𝐺) ∧ {(𝑊‘0)} ∈
(Edg‘𝐺)) ∧
(♯‘𝑊) =
1)) |
30 | 28, 29 | bitr2i 275 |
. 2
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1) ↔
((♯‘𝑊) = 1
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧ {(𝑊‘0)} ∈
(Edg‘𝐺))) |
31 | 5, 27, 30 | 3bitri 297 |
1
⊢ (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺))) |