MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkn1 Structured version   Visualization version   GIF version

Theorem clwwlkn1 28078
Description: A closed walk of length 1 represented as word is a word consisting of 1 symbol representing a vertex connected to itself by (at least) one edge, that is, a loop. (Contributed by AV, 24-Apr-2021.) (Revised by AV, 11-Feb-2022.)
Assertion
Ref Expression
clwwlkn1 (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))

Proof of Theorem clwwlkn1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 1nn 11806 . . 3 1 ∈ ℕ
2 eqid 2736 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2736 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
42, 3isclwwlknx 28073 . . 3 (1 ∈ ℕ → (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1)))
51, 4ax-mp 5 . 2 (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1))
6 3anass 1097 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
7 ral0 4410 . . . . . . . 8 𝑖 ∈ ∅ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)
8 oveq1 7198 . . . . . . . . . . . . 13 ((♯‘𝑊) = 1 → ((♯‘𝑊) − 1) = (1 − 1))
9 1m1e0 11867 . . . . . . . . . . . . 13 (1 − 1) = 0
108, 9eqtrdi 2787 . . . . . . . . . . . 12 ((♯‘𝑊) = 1 → ((♯‘𝑊) − 1) = 0)
1110oveq2d 7207 . . . . . . . . . . 11 ((♯‘𝑊) = 1 → (0..^((♯‘𝑊) − 1)) = (0..^0))
12 fzo0 13231 . . . . . . . . . . 11 (0..^0) = ∅
1311, 12eqtrdi 2787 . . . . . . . . . 10 ((♯‘𝑊) = 1 → (0..^((♯‘𝑊) − 1)) = ∅)
1413raleqdv 3315 . . . . . . . . 9 ((♯‘𝑊) = 1 → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ∅ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
1514adantr 484 . . . . . . . 8 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ∅ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
167, 15mpbiri 261 . . . . . . 7 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))
1716biantrurd 536 . . . . . 6 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
18 lsw1 14087 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → (lastS‘𝑊) = (𝑊‘0))
1918ancoms 462 . . . . . . . . 9 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (lastS‘𝑊) = (𝑊‘0))
2019preq1d 4641 . . . . . . . 8 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (𝑊‘0)})
21 dfsn2 4540 . . . . . . . 8 {(𝑊‘0)} = {(𝑊‘0), (𝑊‘0)}
2220, 21eqtr4di 2789 . . . . . . 7 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0)})
2322eleq1d 2815 . . . . . 6 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘0)} ∈ (Edg‘𝐺)))
2417, 23bitr3d 284 . . . . 5 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0)} ∈ (Edg‘𝐺)))
2524pm5.32da 582 . . . 4 ((♯‘𝑊) = 1 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺))))
266, 25syl5bb 286 . . 3 ((♯‘𝑊) = 1 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺))))
2726pm5.32ri 579 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1))
28 3anass 1097 . . 3 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ((♯‘𝑊) = 1 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺))))
29 ancom 464 . . 3 (((♯‘𝑊) = 1 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺))) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1))
3028, 29bitr2i 279 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1) ↔ ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
315, 27, 303bitri 300 1 (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  c0 4223  {csn 4527  {cpr 4529  cfv 6358  (class class class)co 7191  0cc0 10694  1c1 10695   + caddc 10697  cmin 11027  cn 11795  ..^cfzo 13203  chash 13861  Word cword 14034  lastSclsw 14082  Vtxcvtx 27041  Edgcedg 27092   ClWWalksN cclwwlkn 28061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-xnn0 12128  df-z 12142  df-uz 12404  df-fz 13061  df-fzo 13204  df-hash 13862  df-word 14035  df-lsw 14083  df-clwwlk 28019  df-clwwlkn 28062
This theorem is referenced by:  loopclwwlkn1b  28079  clwwlkn1loopb  28080  clwwlknon1  28134
  Copyright terms: Public domain W3C validator