MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkn1 Structured version   Visualization version   GIF version

Theorem clwwlkn1 28384
Description: A closed walk of length 1 represented as word is a word consisting of 1 symbol representing a vertex connected to itself by (at least) one edge, that is, a loop. (Contributed by AV, 24-Apr-2021.) (Revised by AV, 11-Feb-2022.)
Assertion
Ref Expression
clwwlkn1 (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))

Proof of Theorem clwwlkn1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 1nn 11967 . . 3 1 ∈ ℕ
2 eqid 2739 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2739 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
42, 3isclwwlknx 28379 . . 3 (1 ∈ ℕ → (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1)))
51, 4ax-mp 5 . 2 (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1))
6 3anass 1093 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
7 ral0 4448 . . . . . . . 8 𝑖 ∈ ∅ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)
8 oveq1 7275 . . . . . . . . . . . . 13 ((♯‘𝑊) = 1 → ((♯‘𝑊) − 1) = (1 − 1))
9 1m1e0 12028 . . . . . . . . . . . . 13 (1 − 1) = 0
108, 9eqtrdi 2795 . . . . . . . . . . . 12 ((♯‘𝑊) = 1 → ((♯‘𝑊) − 1) = 0)
1110oveq2d 7284 . . . . . . . . . . 11 ((♯‘𝑊) = 1 → (0..^((♯‘𝑊) − 1)) = (0..^0))
12 fzo0 13392 . . . . . . . . . . 11 (0..^0) = ∅
1311, 12eqtrdi 2795 . . . . . . . . . 10 ((♯‘𝑊) = 1 → (0..^((♯‘𝑊) − 1)) = ∅)
1413raleqdv 3346 . . . . . . . . 9 ((♯‘𝑊) = 1 → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ∅ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
1514adantr 480 . . . . . . . 8 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ∅ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
167, 15mpbiri 257 . . . . . . 7 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺))
1716biantrurd 532 . . . . . 6 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
18 lsw1 14251 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → (lastS‘𝑊) = (𝑊‘0))
1918ancoms 458 . . . . . . . . 9 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → (lastS‘𝑊) = (𝑊‘0))
2019preq1d 4680 . . . . . . . 8 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (𝑊‘0)})
21 dfsn2 4579 . . . . . . . 8 {(𝑊‘0)} = {(𝑊‘0), (𝑊‘0)}
2220, 21eqtr4di 2797 . . . . . . 7 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0)})
2322eleq1d 2824 . . . . . 6 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘0)} ∈ (Edg‘𝐺)))
2417, 23bitr3d 280 . . . . 5 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺)) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ {(𝑊‘0)} ∈ (Edg‘𝐺)))
2524pm5.32da 578 . . . 4 ((♯‘𝑊) = 1 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺))))
266, 25syl5bb 282 . . 3 ((♯‘𝑊) = 1 → ((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺))))
2726pm5.32ri 575 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1))
28 3anass 1093 . . 3 (((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ((♯‘𝑊) = 1 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺))))
29 ancom 460 . . 3 (((♯‘𝑊) = 1 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺))) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1))
3028, 29bitr2i 275 . 2 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)) ∧ (♯‘𝑊) = 1) ↔ ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
315, 27, 303bitri 296 1 (𝑊 ∈ (1 ClWWalksN 𝐺) ↔ ((♯‘𝑊) = 1 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ {(𝑊‘0)} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wral 3065  c0 4261  {csn 4566  {cpr 4568  cfv 6430  (class class class)co 7268  0cc0 10855  1c1 10856   + caddc 10858  cmin 11188  cn 11956  ..^cfzo 13364  chash 14025  Word cword 14198  lastSclsw 14246  Vtxcvtx 27347  Edgcedg 27398   ClWWalksN cclwwlkn 28367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-xnn0 12289  df-z 12303  df-uz 12565  df-fz 13222  df-fzo 13365  df-hash 14026  df-word 14199  df-lsw 14247  df-clwwlk 28325  df-clwwlkn 28368
This theorem is referenced by:  loopclwwlkn1b  28385  clwwlkn1loopb  28386  clwwlknon1  28440
  Copyright terms: Public domain W3C validator