Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlk1loop | Structured version Visualization version GIF version |
Description: A closed walk of length 1 is a loop. See also clwlkl1loop 28130. (Contributed by AV, 24-Apr-2021.) |
Ref | Expression |
---|---|
clwwlk1loop | ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 1) → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2739 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | isclwwlk 28327 | . . 3 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) |
4 | lsw1 14251 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → (lastS‘𝑊) = (𝑊‘0)) | |
5 | 4 | preq1d 4680 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (𝑊‘0)}) |
6 | 5 | eleq1d 2824 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺))) |
7 | 6 | biimpd 228 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺))) |
8 | 7 | ex 412 | . . . . . . 7 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = 1 → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺)))) |
9 | 8 | com23 86 | . . . . . 6 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 1 → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺)))) |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 1 → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺)))) |
11 | 10 | imp 406 | . . . 4 ⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = 1 → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺))) |
12 | 11 | 3adant2 1129 | . . 3 ⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = 1 → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺))) |
13 | 3, 12 | sylbi 216 | . 2 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → ((♯‘𝑊) = 1 → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺))) |
14 | 13 | imp 406 | 1 ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 1) → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∅c0 4261 {cpr 4568 ‘cfv 6430 (class class class)co 7268 0cc0 10855 1c1 10856 + caddc 10858 − cmin 11188 ..^cfzo 13364 ♯chash 14025 Word cword 14198 lastSclsw 14246 Vtxcvtx 27347 Edgcedg 27398 ClWWalkscclwwlk 28324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-hash 14026 df-word 14199 df-lsw 14247 df-clwwlk 28325 |
This theorem is referenced by: umgrclwwlkge2 28334 |
Copyright terms: Public domain | W3C validator |