Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clwwlk1loop | Structured version Visualization version GIF version |
Description: A closed walk of length 1 is a loop. See also clwlkl1loop 28196. (Contributed by AV, 24-Apr-2021.) |
Ref | Expression |
---|---|
clwwlk1loop | ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 1) → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2736 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | isclwwlk 28393 | . . 3 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))) |
4 | lsw1 14315 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → (lastS‘𝑊) = (𝑊‘0)) | |
5 | 4 | preq1d 4679 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → {(lastS‘𝑊), (𝑊‘0)} = {(𝑊‘0), (𝑊‘0)}) |
6 | 5 | eleq1d 2821 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) ↔ {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺))) |
7 | 6 | biimpd 228 | . . . . . . . 8 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = 1) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺))) |
8 | 7 | ex 414 | . . . . . . 7 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = 1 → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺)))) |
9 | 8 | com23 86 | . . . . . 6 ⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 1 → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺)))) |
10 | 9 | adantr 482 | . . . . 5 ⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) → ({(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺) → ((♯‘𝑊) = 1 → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺)))) |
11 | 10 | imp 408 | . . . 4 ⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = 1 → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺))) |
12 | 11 | 3adant2 1131 | . . 3 ⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ 𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) → ((♯‘𝑊) = 1 → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺))) |
13 | 3, 12 | sylbi 216 | . 2 ⊢ (𝑊 ∈ (ClWWalks‘𝐺) → ((♯‘𝑊) = 1 → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺))) |
14 | 13 | imp 408 | 1 ⊢ ((𝑊 ∈ (ClWWalks‘𝐺) ∧ (♯‘𝑊) = 1) → {(𝑊‘0), (𝑊‘0)} ∈ (Edg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∀wral 3062 ∅c0 4262 {cpr 4567 ‘cfv 6458 (class class class)co 7307 0cc0 10917 1c1 10918 + caddc 10920 − cmin 11251 ..^cfzo 13428 ♯chash 14090 Word cword 14262 lastSclsw 14310 Vtxcvtx 27411 Edgcedg 27462 ClWWalkscclwwlk 28390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-fzo 13429 df-hash 14091 df-word 14263 df-lsw 14311 df-clwwlk 28391 |
This theorem is referenced by: umgrclwwlkge2 28400 |
Copyright terms: Public domain | W3C validator |