MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2fv2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2fv2 29932
Description: Lemma 4b for clwlkclwwlklem2a 29934. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2fv2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2fv2
StepHypRef Expression
1 clwlkclwwlklem2.f . 2 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
2 simpr 484 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → 𝑥 = ((♯‘𝑃) − 2))
3 nn0z 12561 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
4 2z 12572 . . . . . . . . . . . . . 14 2 ∈ ℤ
53, 4jctir 520 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ))
6 zsubcl 12582 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘𝑃) − 2) ∈ ℤ)
75, 6syl 17 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
87adantr 480 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℤ)
98adantr 480 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → ((♯‘𝑃) − 2) ∈ ℤ)
102, 9eqeltrd 2829 . . . . . . . . 9 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → 𝑥 ∈ ℤ)
1110ex 412 . . . . . . . 8 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 = ((♯‘𝑃) − 2) → 𝑥 ∈ ℤ))
12 zre 12540 . . . . . . . . . . 11 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
13 nn0re 12458 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
14 2re 12267 . . . . . . . . . . . . . 14 2 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
1613, 15resubcld 11613 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℝ)
1716adantr 480 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℝ)
18 lttri3 11264 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ((♯‘𝑃) − 2) ∈ ℝ) → (𝑥 = ((♯‘𝑃) − 2) ↔ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥)))
1912, 17, 18syl2anr 597 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ ℤ) → (𝑥 = ((♯‘𝑃) − 2) ↔ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥)))
20 simpl 482 . . . . . . . . . 10 ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥) → ¬ 𝑥 < ((♯‘𝑃) − 2))
2119, 20biimtrdi 253 . . . . . . . . 9 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ ℤ) → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2)))
2221ex 412 . . . . . . . 8 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 ∈ ℤ → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2311, 22syld 47 . . . . . . 7 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 = ((♯‘𝑃) − 2) → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2423com13 88 . . . . . 6 (𝑥 = ((♯‘𝑃) − 2) → (𝑥 = ((♯‘𝑃) − 2) → (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2524pm2.43i 52 . . . . 5 (𝑥 = ((♯‘𝑃) − 2) → (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ¬ 𝑥 < ((♯‘𝑃) − 2)))
2625impcom 407 . . . 4 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → ¬ 𝑥 < ((♯‘𝑃) − 2))
2726iffalsed 4502 . . 3 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃𝑥), (𝑃‘0)}))
28 fveq2 6861 . . . . . 6 (𝑥 = ((♯‘𝑃) − 2) → (𝑃𝑥) = (𝑃‘((♯‘𝑃) − 2)))
2928adantl 481 . . . . 5 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → (𝑃𝑥) = (𝑃‘((♯‘𝑃) − 2)))
3029preq1d 4706 . . . 4 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → {(𝑃𝑥), (𝑃‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
3130fveq2d 6865 . . 3 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
3227, 31eqtrd 2765 . 2 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
335adantr 480 . . . . 5 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ))
3433, 6syl 17 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℤ)
3513, 15subge0d 11775 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → (0 ≤ ((♯‘𝑃) − 2) ↔ 2 ≤ (♯‘𝑃)))
3635biimpar 477 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 ≤ ((♯‘𝑃) − 2))
37 elnn0z 12549 . . . 4 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
3834, 36, 37sylanbrc 583 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℕ0)
39 nn0ge2m1nn 12519 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
40 1red 11182 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 1 ∈ ℝ)
4114a1i 11 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ∈ ℝ)
4213adantr 480 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℝ)
43 1lt2 12359 . . . . 5 1 < 2
4443a1i 11 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 1 < 2)
4540, 41, 42, 44ltsub2dd 11798 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) < ((♯‘𝑃) − 1))
46 elfzo0 13668 . . 3 (((♯‘𝑃) − 2) ∈ (0..^((♯‘𝑃) − 1)) ↔ (((♯‘𝑃) − 2) ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 2) < ((♯‘𝑃) − 1)))
4738, 39, 45, 46syl3anbrc 1344 . 2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ (0..^((♯‘𝑃) − 1)))
48 fvexd 6876 . 2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}) ∈ V)
491, 32, 47, 48fvmptd2 6979 1 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  ifcif 4491  {cpr 4594   class class class wbr 5110  cmpt 5191  ccnv 5640  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  cn 12193  2c2 12248  0cn0 12449  cz 12536  ..^cfzo 13622  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by:  clwlkclwwlklem2a4  29933
  Copyright terms: Public domain W3C validator