MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2fv2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2fv2 28360
Description: Lemma 4b for clwlkclwwlklem2a 28362. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2fv2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2fv2
StepHypRef Expression
1 clwlkclwwlklem2.f . 2 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
2 simpr 485 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → 𝑥 = ((♯‘𝑃) − 2))
3 nn0z 12343 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
4 2z 12352 . . . . . . . . . . . . . 14 2 ∈ ℤ
53, 4jctir 521 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ))
6 zsubcl 12362 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘𝑃) − 2) ∈ ℤ)
75, 6syl 17 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
87adantr 481 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℤ)
98adantr 481 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → ((♯‘𝑃) − 2) ∈ ℤ)
102, 9eqeltrd 2839 . . . . . . . . 9 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → 𝑥 ∈ ℤ)
1110ex 413 . . . . . . . 8 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 = ((♯‘𝑃) − 2) → 𝑥 ∈ ℤ))
12 zre 12323 . . . . . . . . . . 11 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
13 nn0re 12242 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
14 2re 12047 . . . . . . . . . . . . . 14 2 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
1613, 15resubcld 11403 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℝ)
1716adantr 481 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℝ)
18 lttri3 11058 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ((♯‘𝑃) − 2) ∈ ℝ) → (𝑥 = ((♯‘𝑃) − 2) ↔ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥)))
1912, 17, 18syl2anr 597 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ ℤ) → (𝑥 = ((♯‘𝑃) − 2) ↔ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥)))
20 simpl 483 . . . . . . . . . 10 ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥) → ¬ 𝑥 < ((♯‘𝑃) − 2))
2119, 20syl6bi 252 . . . . . . . . 9 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ ℤ) → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2)))
2221ex 413 . . . . . . . 8 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 ∈ ℤ → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2311, 22syld 47 . . . . . . 7 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 = ((♯‘𝑃) − 2) → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2423com13 88 . . . . . 6 (𝑥 = ((♯‘𝑃) − 2) → (𝑥 = ((♯‘𝑃) − 2) → (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2524pm2.43i 52 . . . . 5 (𝑥 = ((♯‘𝑃) − 2) → (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ¬ 𝑥 < ((♯‘𝑃) − 2)))
2625impcom 408 . . . 4 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → ¬ 𝑥 < ((♯‘𝑃) − 2))
2726iffalsed 4470 . . 3 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃𝑥), (𝑃‘0)}))
28 fveq2 6774 . . . . . 6 (𝑥 = ((♯‘𝑃) − 2) → (𝑃𝑥) = (𝑃‘((♯‘𝑃) − 2)))
2928adantl 482 . . . . 5 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → (𝑃𝑥) = (𝑃‘((♯‘𝑃) − 2)))
3029preq1d 4675 . . . 4 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → {(𝑃𝑥), (𝑃‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
3130fveq2d 6778 . . 3 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
3227, 31eqtrd 2778 . 2 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
335adantr 481 . . . . 5 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ))
3433, 6syl 17 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℤ)
3513, 15subge0d 11565 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → (0 ≤ ((♯‘𝑃) − 2) ↔ 2 ≤ (♯‘𝑃)))
3635biimpar 478 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 ≤ ((♯‘𝑃) − 2))
37 elnn0z 12332 . . . 4 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
3834, 36, 37sylanbrc 583 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℕ0)
39 nn0ge2m1nn 12302 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
40 1red 10976 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 1 ∈ ℝ)
4114a1i 11 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ∈ ℝ)
4213adantr 481 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℝ)
43 1lt2 12144 . . . . 5 1 < 2
4443a1i 11 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 1 < 2)
4540, 41, 42, 44ltsub2dd 11588 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) < ((♯‘𝑃) − 1))
46 elfzo0 13428 . . 3 (((♯‘𝑃) − 2) ∈ (0..^((♯‘𝑃) − 1)) ↔ (((♯‘𝑃) − 2) ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 2) < ((♯‘𝑃) − 1)))
4738, 39, 45, 46syl3anbrc 1342 . 2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ (0..^((♯‘𝑃) − 1)))
48 fvexd 6789 . 2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}) ∈ V)
491, 32, 47, 48fvmptd2 6883 1 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  ifcif 4459  {cpr 4563   class class class wbr 5074  cmpt 5157  ccnv 5588  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  2c2 12028  0cn0 12233  cz 12319  ..^cfzo 13382  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383
This theorem is referenced by:  clwlkclwwlklem2a4  28361
  Copyright terms: Public domain W3C validator