MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2fv2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2fv2 29514
Description: Lemma 4b for clwlkclwwlklem2a 29516. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2fv2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2fv2
StepHypRef Expression
1 clwlkclwwlklem2.f . 2 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
2 simpr 483 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → 𝑥 = ((♯‘𝑃) − 2))
3 nn0z 12589 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
4 2z 12600 . . . . . . . . . . . . . 14 2 ∈ ℤ
53, 4jctir 519 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ))
6 zsubcl 12610 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘𝑃) − 2) ∈ ℤ)
75, 6syl 17 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
87adantr 479 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℤ)
98adantr 479 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → ((♯‘𝑃) − 2) ∈ ℤ)
102, 9eqeltrd 2831 . . . . . . . . 9 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → 𝑥 ∈ ℤ)
1110ex 411 . . . . . . . 8 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 = ((♯‘𝑃) − 2) → 𝑥 ∈ ℤ))
12 zre 12568 . . . . . . . . . . 11 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
13 nn0re 12487 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
14 2re 12292 . . . . . . . . . . . . . 14 2 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
1613, 15resubcld 11648 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℝ)
1716adantr 479 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℝ)
18 lttri3 11303 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ((♯‘𝑃) − 2) ∈ ℝ) → (𝑥 = ((♯‘𝑃) − 2) ↔ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥)))
1912, 17, 18syl2anr 595 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ ℤ) → (𝑥 = ((♯‘𝑃) − 2) ↔ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥)))
20 simpl 481 . . . . . . . . . 10 ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥) → ¬ 𝑥 < ((♯‘𝑃) − 2))
2119, 20syl6bi 252 . . . . . . . . 9 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ ℤ) → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2)))
2221ex 411 . . . . . . . 8 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 ∈ ℤ → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2311, 22syld 47 . . . . . . 7 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 = ((♯‘𝑃) − 2) → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2423com13 88 . . . . . 6 (𝑥 = ((♯‘𝑃) − 2) → (𝑥 = ((♯‘𝑃) − 2) → (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2524pm2.43i 52 . . . . 5 (𝑥 = ((♯‘𝑃) − 2) → (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ¬ 𝑥 < ((♯‘𝑃) − 2)))
2625impcom 406 . . . 4 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → ¬ 𝑥 < ((♯‘𝑃) − 2))
2726iffalsed 4540 . . 3 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃𝑥), (𝑃‘0)}))
28 fveq2 6892 . . . . . 6 (𝑥 = ((♯‘𝑃) − 2) → (𝑃𝑥) = (𝑃‘((♯‘𝑃) − 2)))
2928adantl 480 . . . . 5 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → (𝑃𝑥) = (𝑃‘((♯‘𝑃) − 2)))
3029preq1d 4744 . . . 4 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → {(𝑃𝑥), (𝑃‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
3130fveq2d 6896 . . 3 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
3227, 31eqtrd 2770 . 2 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
335adantr 479 . . . . 5 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ))
3433, 6syl 17 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℤ)
3513, 15subge0d 11810 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → (0 ≤ ((♯‘𝑃) − 2) ↔ 2 ≤ (♯‘𝑃)))
3635biimpar 476 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 ≤ ((♯‘𝑃) − 2))
37 elnn0z 12577 . . . 4 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
3834, 36, 37sylanbrc 581 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℕ0)
39 nn0ge2m1nn 12547 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
40 1red 11221 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 1 ∈ ℝ)
4114a1i 11 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ∈ ℝ)
4213adantr 479 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℝ)
43 1lt2 12389 . . . . 5 1 < 2
4443a1i 11 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 1 < 2)
4540, 41, 42, 44ltsub2dd 11833 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) < ((♯‘𝑃) − 1))
46 elfzo0 13679 . . 3 (((♯‘𝑃) − 2) ∈ (0..^((♯‘𝑃) − 1)) ↔ (((♯‘𝑃) − 2) ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 2) < ((♯‘𝑃) − 1)))
4738, 39, 45, 46syl3anbrc 1341 . 2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ (0..^((♯‘𝑃) − 1)))
48 fvexd 6907 . 2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}) ∈ V)
491, 32, 47, 48fvmptd2 7007 1 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  Vcvv 3472  ifcif 4529  {cpr 4631   class class class wbr 5149  cmpt 5232  ccnv 5676  cfv 6544  (class class class)co 7413  cr 11113  0cc0 11114  1c1 11115   + caddc 11117   < clt 11254  cle 11255  cmin 11450  cn 12218  2c2 12273  0cn0 12478  cz 12564  ..^cfzo 13633  chash 14296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-nn 12219  df-2 12281  df-n0 12479  df-z 12565  df-uz 12829  df-fz 13491  df-fzo 13634
This theorem is referenced by:  clwlkclwwlklem2a4  29515
  Copyright terms: Public domain W3C validator