MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2fv2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2fv2 30024
Description: Lemma 4b for clwlkclwwlklem2a 30026. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
Hypothesis
Ref Expression
clwlkclwwlklem2.f 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
Assertion
Ref Expression
clwlkclwwlklem2fv2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
Distinct variable groups:   𝑥,𝑃   𝑥,𝐸
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem clwlkclwwlklem2fv2
StepHypRef Expression
1 clwlkclwwlklem2.f . 2 𝐹 = (𝑥 ∈ (0..^((♯‘𝑃) − 1)) ↦ if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})))
2 simpr 484 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → 𝑥 = ((♯‘𝑃) − 2))
3 nn0z 12635 . . . . . . . . . . . . . 14 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℤ)
4 2z 12646 . . . . . . . . . . . . . 14 2 ∈ ℤ
53, 4jctir 520 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ))
6 zsubcl 12656 . . . . . . . . . . . . 13 (((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ) → ((♯‘𝑃) − 2) ∈ ℤ)
75, 6syl 17 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℤ)
87adantr 480 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℤ)
98adantr 480 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → ((♯‘𝑃) − 2) ∈ ℤ)
102, 9eqeltrd 2838 . . . . . . . . 9 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → 𝑥 ∈ ℤ)
1110ex 412 . . . . . . . 8 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 = ((♯‘𝑃) − 2) → 𝑥 ∈ ℤ))
12 zre 12614 . . . . . . . . . . 11 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
13 nn0re 12532 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
14 2re 12337 . . . . . . . . . . . . . 14 2 ∈ ℝ
1514a1i 11 . . . . . . . . . . . . 13 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
1613, 15resubcld 11688 . . . . . . . . . . . 12 ((♯‘𝑃) ∈ ℕ0 → ((♯‘𝑃) − 2) ∈ ℝ)
1716adantr 480 . . . . . . . . . . 11 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℝ)
18 lttri3 11341 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ ((♯‘𝑃) − 2) ∈ ℝ) → (𝑥 = ((♯‘𝑃) − 2) ↔ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥)))
1912, 17, 18syl2anr 597 . . . . . . . . . 10 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ ℤ) → (𝑥 = ((♯‘𝑃) − 2) ↔ (¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥)))
20 simpl 482 . . . . . . . . . 10 ((¬ 𝑥 < ((♯‘𝑃) − 2) ∧ ¬ ((♯‘𝑃) − 2) < 𝑥) → ¬ 𝑥 < ((♯‘𝑃) − 2))
2119, 20biimtrdi 253 . . . . . . . . 9 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 ∈ ℤ) → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2)))
2221ex 412 . . . . . . . 8 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 ∈ ℤ → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2311, 22syld 47 . . . . . . 7 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝑥 = ((♯‘𝑃) − 2) → (𝑥 = ((♯‘𝑃) − 2) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2423com13 88 . . . . . 6 (𝑥 = ((♯‘𝑃) − 2) → (𝑥 = ((♯‘𝑃) − 2) → (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ¬ 𝑥 < ((♯‘𝑃) − 2))))
2524pm2.43i 52 . . . . 5 (𝑥 = ((♯‘𝑃) − 2) → (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ¬ 𝑥 < ((♯‘𝑃) − 2)))
2625impcom 407 . . . 4 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → ¬ 𝑥 < ((♯‘𝑃) − 2))
2726iffalsed 4541 . . 3 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃𝑥), (𝑃‘0)}))
28 fveq2 6906 . . . . . 6 (𝑥 = ((♯‘𝑃) − 2) → (𝑃𝑥) = (𝑃‘((♯‘𝑃) − 2)))
2928adantl 481 . . . . 5 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → (𝑃𝑥) = (𝑃‘((♯‘𝑃) − 2)))
3029preq1d 4743 . . . 4 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → {(𝑃𝑥), (𝑃‘0)} = {(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)})
3130fveq2d 6910 . . 3 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → (𝐸‘{(𝑃𝑥), (𝑃‘0)}) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
3227, 31eqtrd 2774 . 2 ((((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑥 = ((♯‘𝑃) − 2)) → if(𝑥 < ((♯‘𝑃) − 2), (𝐸‘{(𝑃𝑥), (𝑃‘(𝑥 + 1))}), (𝐸‘{(𝑃𝑥), (𝑃‘0)})) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
335adantr 480 . . . . 5 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) ∈ ℤ ∧ 2 ∈ ℤ))
3433, 6syl 17 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℤ)
3513, 15subge0d 11850 . . . . 5 ((♯‘𝑃) ∈ ℕ0 → (0 ≤ ((♯‘𝑃) − 2) ↔ 2 ≤ (♯‘𝑃)))
3635biimpar 477 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 0 ≤ ((♯‘𝑃) − 2))
37 elnn0z 12623 . . . 4 (((♯‘𝑃) − 2) ∈ ℕ0 ↔ (((♯‘𝑃) − 2) ∈ ℤ ∧ 0 ≤ ((♯‘𝑃) − 2)))
3834, 36, 37sylanbrc 583 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ ℕ0)
39 nn0ge2m1nn 12593 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 1) ∈ ℕ)
40 1red 11259 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 1 ∈ ℝ)
4114a1i 11 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 2 ∈ ℝ)
4213adantr 480 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝑃) ∈ ℝ)
43 1lt2 12434 . . . . 5 1 < 2
4443a1i 11 . . . 4 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → 1 < 2)
4540, 41, 42, 44ltsub2dd 11873 . . 3 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) < ((♯‘𝑃) − 1))
46 elfzo0 13736 . . 3 (((♯‘𝑃) − 2) ∈ (0..^((♯‘𝑃) − 1)) ↔ (((♯‘𝑃) − 2) ∈ ℕ0 ∧ ((♯‘𝑃) − 1) ∈ ℕ ∧ ((♯‘𝑃) − 2) < ((♯‘𝑃) − 1)))
4738, 39, 45, 46syl3anbrc 1342 . 2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝑃) − 2) ∈ (0..^((♯‘𝑃) − 1)))
48 fvexd 6921 . 2 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}) ∈ V)
491, 32, 47, 48fvmptd2 7023 1 (((♯‘𝑃) ∈ ℕ0 ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝑃) − 2)) = (𝐸‘{(𝑃‘((♯‘𝑃) − 2)), (𝑃‘0)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  ifcif 4530  {cpr 4632   class class class wbr 5147  cmpt 5230  ccnv 5687  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cmin 11489  cn 12263  2c2 12318  0cn0 12523  cz 12610  ..^cfzo 13690  chash 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691
This theorem is referenced by:  clwlkclwwlklem2a4  30025
  Copyright terms: Public domain W3C validator