MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem1 Structured version   Visualization version   GIF version

Theorem zorn2lem1 10425
Description: Lemma for zorn2 10435. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem1
StepHypRef Expression
1 zorn2lem.3 . . . . 5 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
21tfr2 8343 . . . 4 (𝑥 ∈ On → (𝐹𝑥) = ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)))
32adantr 480 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) = ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)))
41tfr1 8342 . . . . . 6 𝐹 Fn On
5 fnfun 6600 . . . . . 6 (𝐹 Fn On → Fun 𝐹)
64, 5ax-mp 5 . . . . 5 Fun 𝐹
7 vex 3448 . . . . 5 𝑥 ∈ V
8 resfunexg 7171 . . . . 5 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
96, 7, 8mp2an 692 . . . 4 (𝐹𝑥) ∈ V
10 rneq 5889 . . . . . . . . . . . 12 (𝑓 = (𝐹𝑥) → ran 𝑓 = ran (𝐹𝑥))
11 df-ima 5644 . . . . . . . . . . . 12 (𝐹𝑥) = ran (𝐹𝑥)
1210, 11eqtr4di 2782 . . . . . . . . . . 11 (𝑓 = (𝐹𝑥) → ran 𝑓 = (𝐹𝑥))
1312eleq2d 2814 . . . . . . . . . 10 (𝑓 = (𝐹𝑥) → (𝑔 ∈ ran 𝑓𝑔 ∈ (𝐹𝑥)))
1413imbi1d 341 . . . . . . . . 9 (𝑓 = (𝐹𝑥) → ((𝑔 ∈ ran 𝑓𝑔𝑅𝑧) ↔ (𝑔 ∈ (𝐹𝑥) → 𝑔𝑅𝑧)))
1514ralbidv2 3152 . . . . . . . 8 (𝑓 = (𝐹𝑥) → (∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧))
1615rabbidv 3410 . . . . . . 7 (𝑓 = (𝐹𝑥) → {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧})
17 zorn2lem.4 . . . . . . 7 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
18 zorn2lem.5 . . . . . . 7 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
1916, 17, 183eqtr4g 2789 . . . . . 6 (𝑓 = (𝐹𝑥) → 𝐶 = 𝐷)
2019eleq2d 2814 . . . . . . . 8 (𝑓 = (𝐹𝑥) → (𝑢𝐶𝑢𝐷))
2120imbi1d 341 . . . . . . 7 (𝑓 = (𝐹𝑥) → ((𝑢𝐶 → ¬ 𝑢𝑤𝑣) ↔ (𝑢𝐷 → ¬ 𝑢𝑤𝑣)))
2221ralbidv2 3152 . . . . . 6 (𝑓 = (𝐹𝑥) → (∀𝑢𝐶 ¬ 𝑢𝑤𝑣 ↔ ∀𝑢𝐷 ¬ 𝑢𝑤𝑣))
2319, 22riotaeqbidv 7329 . . . . 5 (𝑓 = (𝐹𝑥) → (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
24 eqid 2729 . . . . 5 (𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)) = (𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))
25 riotaex 7330 . . . . 5 (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ V
2623, 24, 25fvmpt 6950 . . . 4 ((𝐹𝑥) ∈ V → ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
279, 26ax-mp 5 . . 3 ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
283, 27eqtrdi 2780 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
29 simprl 770 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝑤 We 𝐴)
30 weso 5622 . . . . . . 7 (𝑤 We 𝐴𝑤 Or 𝐴)
3130ad2antrl 728 . . . . . 6 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝑤 Or 𝐴)
32 vex 3448 . . . . . 6 𝑤 ∈ V
33 soex 7877 . . . . . 6 ((𝑤 Or 𝐴𝑤 ∈ V) → 𝐴 ∈ V)
3431, 32, 33sylancl 586 . . . . 5 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐴 ∈ V)
3518, 34rabexd 5290 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷 ∈ V)
3618ssrab3 4041 . . . . 5 𝐷𝐴
3736a1i 11 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷𝐴)
38 simprr 772 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷 ≠ ∅)
39 wereu 5627 . . . 4 ((𝑤 We 𝐴 ∧ (𝐷 ∈ V ∧ 𝐷𝐴𝐷 ≠ ∅)) → ∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
4029, 35, 37, 38, 39syl13anc 1374 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
41 riotacl 7343 . . 3 (∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣 → (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ 𝐷)
4240, 41syl 17 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ 𝐷)
4328, 42eqeltrd 2828 1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  ∃!wreu 3349  {crab 3402  Vcvv 3444  wss 3911  c0 4292   class class class wbr 5102  cmpt 5183   Or wor 5538   We wwe 5583  ran crn 5632  cres 5633  cima 5634  Oncon0 6320  Fun wfun 6493   Fn wfn 6494  cfv 6499  crio 7325  recscrecs 8316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317
This theorem is referenced by:  zorn2lem2  10426  zorn2lem3  10427  zorn2lem4  10428  zorn2lem5  10429
  Copyright terms: Public domain W3C validator