Proof of Theorem zorn2lem1
Step | Hyp | Ref
| Expression |
1 | | zorn2lem.3 |
. . . . 5
⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
2 | 1 | tfr2 8229 |
. . . 4
⊢ (𝑥 ∈ On → (𝐹‘𝑥) = ((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹 ↾ 𝑥))) |
3 | 2 | adantr 481 |
. . 3
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) = ((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹 ↾ 𝑥))) |
4 | 1 | tfr1 8228 |
. . . . . 6
⊢ 𝐹 Fn On |
5 | | fnfun 6533 |
. . . . . 6
⊢ (𝐹 Fn On → Fun 𝐹) |
6 | 4, 5 | ax-mp 5 |
. . . . 5
⊢ Fun 𝐹 |
7 | | vex 3436 |
. . . . 5
⊢ 𝑥 ∈ V |
8 | | resfunexg 7091 |
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ V) → (𝐹 ↾ 𝑥) ∈ V) |
9 | 6, 7, 8 | mp2an 689 |
. . . 4
⊢ (𝐹 ↾ 𝑥) ∈ V |
10 | | rneq 5845 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝐹 ↾ 𝑥) → ran 𝑓 = ran (𝐹 ↾ 𝑥)) |
11 | | df-ima 5602 |
. . . . . . . . . . . 12
⊢ (𝐹 “ 𝑥) = ran (𝐹 ↾ 𝑥) |
12 | 10, 11 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝐹 ↾ 𝑥) → ran 𝑓 = (𝐹 “ 𝑥)) |
13 | 12 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ↾ 𝑥) → (𝑔 ∈ ran 𝑓 ↔ 𝑔 ∈ (𝐹 “ 𝑥))) |
14 | 13 | imbi1d 342 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ↾ 𝑥) → ((𝑔 ∈ ran 𝑓 → 𝑔𝑅𝑧) ↔ (𝑔 ∈ (𝐹 “ 𝑥) → 𝑔𝑅𝑧))) |
15 | 14 | ralbidv2 3110 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ↾ 𝑥) → (∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧)) |
16 | 15 | rabbidv 3414 |
. . . . . . 7
⊢ (𝑓 = (𝐹 ↾ 𝑥) → {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧}) |
17 | | zorn2lem.4 |
. . . . . . 7
⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
18 | | zorn2lem.5 |
. . . . . . 7
⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} |
19 | 16, 17, 18 | 3eqtr4g 2803 |
. . . . . 6
⊢ (𝑓 = (𝐹 ↾ 𝑥) → 𝐶 = 𝐷) |
20 | 19 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ↾ 𝑥) → (𝑢 ∈ 𝐶 ↔ 𝑢 ∈ 𝐷)) |
21 | 20 | imbi1d 342 |
. . . . . . 7
⊢ (𝑓 = (𝐹 ↾ 𝑥) → ((𝑢 ∈ 𝐶 → ¬ 𝑢𝑤𝑣) ↔ (𝑢 ∈ 𝐷 → ¬ 𝑢𝑤𝑣))) |
22 | 21 | ralbidv2 3110 |
. . . . . 6
⊢ (𝑓 = (𝐹 ↾ 𝑥) → (∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣 ↔ ∀𝑢 ∈ 𝐷 ¬ 𝑢𝑤𝑣)) |
23 | 19, 22 | riotaeqbidv 7235 |
. . . . 5
⊢ (𝑓 = (𝐹 ↾ 𝑥) → (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣) = (℩𝑣 ∈ 𝐷 ∀𝑢 ∈ 𝐷 ¬ 𝑢𝑤𝑣)) |
24 | | eqid 2738 |
. . . . 5
⊢ (𝑓 ∈ V ↦
(℩𝑣 ∈
𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣)) = (𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣)) |
25 | | riotaex 7236 |
. . . . 5
⊢
(℩𝑣
∈ 𝐷 ∀𝑢 ∈ 𝐷 ¬ 𝑢𝑤𝑣) ∈ V |
26 | 23, 24, 25 | fvmpt 6875 |
. . . 4
⊢ ((𝐹 ↾ 𝑥) ∈ V → ((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹 ↾ 𝑥)) = (℩𝑣 ∈ 𝐷 ∀𝑢 ∈ 𝐷 ¬ 𝑢𝑤𝑣)) |
27 | 9, 26 | ax-mp 5 |
. . 3
⊢ ((𝑓 ∈ V ↦
(℩𝑣 ∈
𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹 ↾ 𝑥)) = (℩𝑣 ∈ 𝐷 ∀𝑢 ∈ 𝐷 ¬ 𝑢𝑤𝑣) |
28 | 3, 27 | eqtrdi 2794 |
. 2
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) = (℩𝑣 ∈ 𝐷 ∀𝑢 ∈ 𝐷 ¬ 𝑢𝑤𝑣)) |
29 | | simprl 768 |
. . . 4
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → 𝑤 We 𝐴) |
30 | | weso 5580 |
. . . . . . 7
⊢ (𝑤 We 𝐴 → 𝑤 Or 𝐴) |
31 | 30 | ad2antrl 725 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → 𝑤 Or 𝐴) |
32 | | vex 3436 |
. . . . . 6
⊢ 𝑤 ∈ V |
33 | | soex 7768 |
. . . . . 6
⊢ ((𝑤 Or 𝐴 ∧ 𝑤 ∈ V) → 𝐴 ∈ V) |
34 | 31, 32, 33 | sylancl 586 |
. . . . 5
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → 𝐴 ∈ V) |
35 | 18, 34 | rabexd 5257 |
. . . 4
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → 𝐷 ∈ V) |
36 | 18 | ssrab3 4015 |
. . . . 5
⊢ 𝐷 ⊆ 𝐴 |
37 | 36 | a1i 11 |
. . . 4
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → 𝐷 ⊆ 𝐴) |
38 | | simprr 770 |
. . . 4
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → 𝐷 ≠ ∅) |
39 | | wereu 5585 |
. . . 4
⊢ ((𝑤 We 𝐴 ∧ (𝐷 ∈ V ∧ 𝐷 ⊆ 𝐴 ∧ 𝐷 ≠ ∅)) → ∃!𝑣 ∈ 𝐷 ∀𝑢 ∈ 𝐷 ¬ 𝑢𝑤𝑣) |
40 | 29, 35, 37, 38, 39 | syl13anc 1371 |
. . 3
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → ∃!𝑣 ∈ 𝐷 ∀𝑢 ∈ 𝐷 ¬ 𝑢𝑤𝑣) |
41 | | riotacl 7250 |
. . 3
⊢
(∃!𝑣 ∈
𝐷 ∀𝑢 ∈ 𝐷 ¬ 𝑢𝑤𝑣 → (℩𝑣 ∈ 𝐷 ∀𝑢 ∈ 𝐷 ¬ 𝑢𝑤𝑣) ∈ 𝐷) |
42 | 40, 41 | syl 17 |
. 2
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (℩𝑣 ∈ 𝐷 ∀𝑢 ∈ 𝐷 ¬ 𝑢𝑤𝑣) ∈ 𝐷) |
43 | 28, 42 | eqeltrd 2839 |
1
⊢ ((𝑥 ∈ On ∧ (𝑤 We 𝐴 ∧ 𝐷 ≠ ∅)) → (𝐹‘𝑥) ∈ 𝐷) |