MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem1 Structured version   Visualization version   GIF version

Theorem zorn2lem1 9918
Description: Lemma for zorn2 9928. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem1
StepHypRef Expression
1 zorn2lem.3 . . . . 5 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
21tfr2 8034 . . . 4 (𝑥 ∈ On → (𝐹𝑥) = ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)))
32adantr 483 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) = ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)))
41tfr1 8033 . . . . . 6 𝐹 Fn On
5 fnfun 6453 . . . . . 6 (𝐹 Fn On → Fun 𝐹)
64, 5ax-mp 5 . . . . 5 Fun 𝐹
7 vex 3497 . . . . 5 𝑥 ∈ V
8 resfunexg 6978 . . . . 5 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
96, 7, 8mp2an 690 . . . 4 (𝐹𝑥) ∈ V
10 rneq 5806 . . . . . . . . . . . 12 (𝑓 = (𝐹𝑥) → ran 𝑓 = ran (𝐹𝑥))
11 df-ima 5568 . . . . . . . . . . . 12 (𝐹𝑥) = ran (𝐹𝑥)
1210, 11syl6eqr 2874 . . . . . . . . . . 11 (𝑓 = (𝐹𝑥) → ran 𝑓 = (𝐹𝑥))
1312eleq2d 2898 . . . . . . . . . 10 (𝑓 = (𝐹𝑥) → (𝑔 ∈ ran 𝑓𝑔 ∈ (𝐹𝑥)))
1413imbi1d 344 . . . . . . . . 9 (𝑓 = (𝐹𝑥) → ((𝑔 ∈ ran 𝑓𝑔𝑅𝑧) ↔ (𝑔 ∈ (𝐹𝑥) → 𝑔𝑅𝑧)))
1514ralbidv2 3195 . . . . . . . 8 (𝑓 = (𝐹𝑥) → (∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧))
1615rabbidv 3480 . . . . . . 7 (𝑓 = (𝐹𝑥) → {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧})
17 zorn2lem.4 . . . . . . 7 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
18 zorn2lem.5 . . . . . . 7 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
1916, 17, 183eqtr4g 2881 . . . . . 6 (𝑓 = (𝐹𝑥) → 𝐶 = 𝐷)
2019eleq2d 2898 . . . . . . . 8 (𝑓 = (𝐹𝑥) → (𝑢𝐶𝑢𝐷))
2120imbi1d 344 . . . . . . 7 (𝑓 = (𝐹𝑥) → ((𝑢𝐶 → ¬ 𝑢𝑤𝑣) ↔ (𝑢𝐷 → ¬ 𝑢𝑤𝑣)))
2221ralbidv2 3195 . . . . . 6 (𝑓 = (𝐹𝑥) → (∀𝑢𝐶 ¬ 𝑢𝑤𝑣 ↔ ∀𝑢𝐷 ¬ 𝑢𝑤𝑣))
2319, 22riotaeqbidv 7117 . . . . 5 (𝑓 = (𝐹𝑥) → (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
24 eqid 2821 . . . . 5 (𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)) = (𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))
25 riotaex 7118 . . . . 5 (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ V
2623, 24, 25fvmpt 6768 . . . 4 ((𝐹𝑥) ∈ V → ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
279, 26ax-mp 5 . . 3 ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
283, 27syl6eq 2872 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
29 simprl 769 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝑤 We 𝐴)
30 weso 5546 . . . . . . 7 (𝑤 We 𝐴𝑤 Or 𝐴)
3130ad2antrl 726 . . . . . 6 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝑤 Or 𝐴)
32 vex 3497 . . . . . 6 𝑤 ∈ V
33 soex 7626 . . . . . 6 ((𝑤 Or 𝐴𝑤 ∈ V) → 𝐴 ∈ V)
3431, 32, 33sylancl 588 . . . . 5 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐴 ∈ V)
3518, 34rabexd 5236 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷 ∈ V)
3618ssrab3 4057 . . . . 5 𝐷𝐴
3736a1i 11 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷𝐴)
38 simprr 771 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷 ≠ ∅)
39 wereu 5551 . . . 4 ((𝑤 We 𝐴 ∧ (𝐷 ∈ V ∧ 𝐷𝐴𝐷 ≠ ∅)) → ∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
4029, 35, 37, 38, 39syl13anc 1368 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
41 riotacl 7131 . . 3 (∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣 → (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ 𝐷)
4240, 41syl 17 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ 𝐷)
4328, 42eqeltrd 2913 1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  ∃!wreu 3140  {crab 3142  Vcvv 3494  wss 3936  c0 4291   class class class wbr 5066  cmpt 5146   Or wor 5473   We wwe 5513  ran crn 5556  cres 5557  cima 5558  Oncon0 6191  Fun wfun 6349   Fn wfn 6350  cfv 6355  crio 7113  recscrecs 8007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-wrecs 7947  df-recs 8008
This theorem is referenced by:  zorn2lem2  9919  zorn2lem3  9920  zorn2lem4  9921  zorn2lem5  9922
  Copyright terms: Public domain W3C validator