MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem1 Structured version   Visualization version   GIF version

Theorem zorn2lem1 9907
Description: Lemma for zorn2 9917. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑧   𝑣,𝐶
Allowed substitution hints:   𝐶(𝑥,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)

Proof of Theorem zorn2lem1
StepHypRef Expression
1 zorn2lem.3 . . . . 5 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
21tfr2 8017 . . . 4 (𝑥 ∈ On → (𝐹𝑥) = ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)))
32adantr 484 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) = ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)))
41tfr1 8016 . . . . . 6 𝐹 Fn On
5 fnfun 6423 . . . . . 6 (𝐹 Fn On → Fun 𝐹)
64, 5ax-mp 5 . . . . 5 Fun 𝐹
7 vex 3444 . . . . 5 𝑥 ∈ V
8 resfunexg 6955 . . . . 5 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
96, 7, 8mp2an 691 . . . 4 (𝐹𝑥) ∈ V
10 rneq 5770 . . . . . . . . . . . 12 (𝑓 = (𝐹𝑥) → ran 𝑓 = ran (𝐹𝑥))
11 df-ima 5532 . . . . . . . . . . . 12 (𝐹𝑥) = ran (𝐹𝑥)
1210, 11eqtr4di 2851 . . . . . . . . . . 11 (𝑓 = (𝐹𝑥) → ran 𝑓 = (𝐹𝑥))
1312eleq2d 2875 . . . . . . . . . 10 (𝑓 = (𝐹𝑥) → (𝑔 ∈ ran 𝑓𝑔 ∈ (𝐹𝑥)))
1413imbi1d 345 . . . . . . . . 9 (𝑓 = (𝐹𝑥) → ((𝑔 ∈ ran 𝑓𝑔𝑅𝑧) ↔ (𝑔 ∈ (𝐹𝑥) → 𝑔𝑅𝑧)))
1514ralbidv2 3160 . . . . . . . 8 (𝑓 = (𝐹𝑥) → (∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧))
1615rabbidv 3427 . . . . . . 7 (𝑓 = (𝐹𝑥) → {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧})
17 zorn2lem.4 . . . . . . 7 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
18 zorn2lem.5 . . . . . . 7 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
1916, 17, 183eqtr4g 2858 . . . . . 6 (𝑓 = (𝐹𝑥) → 𝐶 = 𝐷)
2019eleq2d 2875 . . . . . . . 8 (𝑓 = (𝐹𝑥) → (𝑢𝐶𝑢𝐷))
2120imbi1d 345 . . . . . . 7 (𝑓 = (𝐹𝑥) → ((𝑢𝐶 → ¬ 𝑢𝑤𝑣) ↔ (𝑢𝐷 → ¬ 𝑢𝑤𝑣)))
2221ralbidv2 3160 . . . . . 6 (𝑓 = (𝐹𝑥) → (∀𝑢𝐶 ¬ 𝑢𝑤𝑣 ↔ ∀𝑢𝐷 ¬ 𝑢𝑤𝑣))
2319, 22riotaeqbidv 7096 . . . . 5 (𝑓 = (𝐹𝑥) → (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
24 eqid 2798 . . . . 5 (𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)) = (𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))
25 riotaex 7097 . . . . 5 (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ V
2623, 24, 25fvmpt 6745 . . . 4 ((𝐹𝑥) ∈ V → ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
279, 26ax-mp 5 . . 3 ((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣))‘(𝐹𝑥)) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
283, 27eqtrdi 2849 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) = (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣))
29 simprl 770 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝑤 We 𝐴)
30 weso 5510 . . . . . . 7 (𝑤 We 𝐴𝑤 Or 𝐴)
3130ad2antrl 727 . . . . . 6 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝑤 Or 𝐴)
32 vex 3444 . . . . . 6 𝑤 ∈ V
33 soex 7608 . . . . . 6 ((𝑤 Or 𝐴𝑤 ∈ V) → 𝐴 ∈ V)
3431, 32, 33sylancl 589 . . . . 5 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐴 ∈ V)
3518, 34rabexd 5200 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷 ∈ V)
3618ssrab3 4008 . . . . 5 𝐷𝐴
3736a1i 11 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷𝐴)
38 simprr 772 . . . 4 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → 𝐷 ≠ ∅)
39 wereu 5515 . . . 4 ((𝑤 We 𝐴 ∧ (𝐷 ∈ V ∧ 𝐷𝐴𝐷 ≠ ∅)) → ∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
4029, 35, 37, 38, 39syl13anc 1369 . . 3 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → ∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣)
41 riotacl 7110 . . 3 (∃!𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣 → (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ 𝐷)
4240, 41syl 17 . 2 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝑣𝐷𝑢𝐷 ¬ 𝑢𝑤𝑣) ∈ 𝐷)
4328, 42eqeltrd 2890 1 ((𝑥 ∈ On ∧ (𝑤 We 𝐴𝐷 ≠ ∅)) → (𝐹𝑥) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  ∃!wreu 3108  {crab 3110  Vcvv 3441  wss 3881  c0 4243   class class class wbr 5030  cmpt 5110   Or wor 5437   We wwe 5477  ran crn 5520  cres 5521  cima 5522  Oncon0 6159  Fun wfun 6318   Fn wfn 6319  cfv 6324  crio 7092  recscrecs 7990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-wrecs 7930  df-recs 7991
This theorem is referenced by:  zorn2lem2  9908  zorn2lem3  9909  zorn2lem4  9910  zorn2lem5  9911
  Copyright terms: Public domain W3C validator