Proof of Theorem islinds5
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | islinds5.b | . . . 4
⊢ 𝐵 = (Base‘𝑊) | 
| 2 | 1 | islinds 21830 | . . 3
⊢ (𝑊 ∈ LMod → (𝑉 ∈ (LIndS‘𝑊) ↔ (𝑉 ⊆ 𝐵 ∧ ( I ↾ 𝑉) LIndF 𝑊))) | 
| 3 | 2 | baibd 539 | . 2
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (𝑉 ∈ (LIndS‘𝑊) ↔ ( I ↾ 𝑉) LIndF 𝑊)) | 
| 4 |  | simpl 482 | . . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → 𝑊 ∈ LMod) | 
| 5 | 1 | fvexi 6919 | . . . . 5
⊢ 𝐵 ∈ V | 
| 6 | 5 | a1i 11 | . . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → 𝐵 ∈ V) | 
| 7 |  | simpr 484 | . . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → 𝑉 ⊆ 𝐵) | 
| 8 | 6, 7 | ssexd 5323 | . . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → 𝑉 ∈ V) | 
| 9 |  | f1oi 6885 | . . . . 5
⊢ ( I
↾ 𝑉):𝑉–1-1-onto→𝑉 | 
| 10 |  | f1of 6847 | . . . . 5
⊢ (( I
↾ 𝑉):𝑉–1-1-onto→𝑉 → ( I ↾ 𝑉):𝑉⟶𝑉) | 
| 11 | 9, 10 | mp1i 13 | . . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ( I ↾ 𝑉):𝑉⟶𝑉) | 
| 12 | 11, 7 | fssd 6752 | . . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ( I ↾ 𝑉):𝑉⟶𝐵) | 
| 13 |  | islinds5.r | . . . 4
⊢ 𝐹 = (Scalar‘𝑊) | 
| 14 |  | islinds5.t | . . . 4
⊢  · = (
·𝑠 ‘𝑊) | 
| 15 |  | islinds5.z | . . . 4
⊢ 𝑂 = (0g‘𝑊) | 
| 16 |  | islinds5.y | . . . 4
⊢  0 =
(0g‘𝐹) | 
| 17 |  | eqid 2736 | . . . 4
⊢
(Base‘(𝐹
freeLMod 𝑉)) =
(Base‘(𝐹 freeLMod
𝑉)) | 
| 18 | 1, 13, 14, 15, 16, 17 | islindf4 21859 | . . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ∈ V ∧ ( I ↾
𝑉):𝑉⟶𝐵) → (( I ↾ 𝑉) LIndF 𝑊 ↔ ∀𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉))((𝑊 Σg (𝑎 ∘f · ( I
↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 })))) | 
| 19 | 4, 8, 12, 18 | syl3anc 1372 | . 2
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (( I ↾ 𝑉) LIndF 𝑊 ↔ ∀𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉))((𝑊 Σg (𝑎 ∘f · ( I
↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 })))) | 
| 20 | 13 | fvexi 6919 | . . . . . 6
⊢ 𝐹 ∈ V | 
| 21 |  | eqid 2736 | . . . . . . 7
⊢ (𝐹 freeLMod 𝑉) = (𝐹 freeLMod 𝑉) | 
| 22 |  | islinds5.k | . . . . . . 7
⊢ 𝐾 = (Base‘𝐹) | 
| 23 | 21, 22, 16, 17 | frlmelbas 21777 | . . . . . 6
⊢ ((𝐹 ∈ V ∧ 𝑉 ∈ V) → (𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉)) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ))) | 
| 24 | 20, 8, 23 | sylancr 587 | . . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉)) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ))) | 
| 25 | 24 | imbi1d 341 | . . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ((𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉)) → ((𝑊 Σg (𝑎 ∘f · ( I
↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))) ↔ ((𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg
(𝑎 ∘f
·
( I ↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))))) | 
| 26 |  | elmapfn 8906 | . . . . . . . . . 10
⊢ (𝑎 ∈ (𝐾 ↑m 𝑉) → 𝑎 Fn 𝑉) | 
| 27 | 26 | ad2antrl 728 | . . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → 𝑎 Fn 𝑉) | 
| 28 | 12 | adantr 480 | . . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → ( I ↾
𝑉):𝑉⟶𝐵) | 
| 29 | 28 | ffnd 6736 | . . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → ( I ↾
𝑉) Fn 𝑉) | 
| 30 | 8 | adantr 480 | . . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → 𝑉 ∈ V) | 
| 31 |  | inidm 4226 | . . . . . . . . 9
⊢ (𝑉 ∩ 𝑉) = 𝑉 | 
| 32 |  | eqidd 2737 | . . . . . . . . 9
⊢ ((((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) ∧ 𝑣 ∈ 𝑉) → (𝑎‘𝑣) = (𝑎‘𝑣)) | 
| 33 |  | fvresi 7194 | . . . . . . . . . 10
⊢ (𝑣 ∈ 𝑉 → (( I ↾ 𝑉)‘𝑣) = 𝑣) | 
| 34 | 33 | adantl 481 | . . . . . . . . 9
⊢ ((((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) ∧ 𝑣 ∈ 𝑉) → (( I ↾ 𝑉)‘𝑣) = 𝑣) | 
| 35 | 27, 29, 30, 30, 31, 32, 34 | offval 7707 | . . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → (𝑎 ∘f · ( I
↾ 𝑉)) = (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) | 
| 36 | 35 | oveq2d 7448 | . . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → (𝑊 Σg
(𝑎 ∘f
·
( I ↾ 𝑉))) = (𝑊 Σg
(𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))) | 
| 37 | 36 | eqeq1d 2738 | . . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → ((𝑊 Σg
(𝑎 ∘f
·
( I ↾ 𝑉))) = 𝑂 ↔ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂)) | 
| 38 | 37 | imbi1d 341 | . . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → (((𝑊 Σg
(𝑎 ∘f
·
( I ↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 })) ↔ ((𝑊 Σg
(𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 })))) | 
| 39 | 38 | pm5.74da 803 | . . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (((𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg
(𝑎 ∘f
·
( I ↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))) ↔ ((𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg
(𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))))) | 
| 40 |  | impexp 450 | . . . . . 6
⊢ (((𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg
(𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) → (𝑎 finSupp 0 → ((𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))))) | 
| 41 |  | impexp 450 | . . . . . . 7
⊢ (((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 })) ↔ (𝑎 finSupp 0 → ((𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 })))) | 
| 42 | 41 | imbi2i 336 | . . . . . 6
⊢ ((𝑎 ∈ (𝐾 ↑m 𝑉) → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) → (𝑎 finSupp 0 → ((𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))))) | 
| 43 | 40, 42 | bitr4i 278 | . . . . 5
⊢ (((𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg
(𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 })))) | 
| 44 | 43 | a1i 11 | . . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (((𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg
(𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 }))))) | 
| 45 | 25, 39, 44 | 3bitrd 305 | . . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ((𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉)) → ((𝑊 Σg (𝑎 ∘f · ( I
↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 }))))) | 
| 46 | 45 | ralbidv2 3173 | . 2
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (∀𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉))((𝑊 Σg (𝑎 ∘f · ( I
↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 })) ↔ ∀𝑎 ∈ (𝐾 ↑m 𝑉)((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 })))) | 
| 47 | 3, 19, 46 | 3bitrd 305 | 1
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (𝑉 ∈ (LIndS‘𝑊) ↔ ∀𝑎 ∈ (𝐾 ↑m 𝑉)((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 })))) |