Proof of Theorem islinds5
Step | Hyp | Ref
| Expression |
1 | | islinds5.b |
. . . 4
⊢ 𝐵 = (Base‘𝑊) |
2 | 1 | islinds 20926 |
. . 3
⊢ (𝑊 ∈ LMod → (𝑉 ∈ (LIndS‘𝑊) ↔ (𝑉 ⊆ 𝐵 ∧ ( I ↾ 𝑉) LIndF 𝑊))) |
3 | 2 | baibd 539 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (𝑉 ∈ (LIndS‘𝑊) ↔ ( I ↾ 𝑉) LIndF 𝑊)) |
4 | | simpl 482 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → 𝑊 ∈ LMod) |
5 | 1 | fvexi 6770 |
. . . . 5
⊢ 𝐵 ∈ V |
6 | 5 | a1i 11 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → 𝐵 ∈ V) |
7 | | simpr 484 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → 𝑉 ⊆ 𝐵) |
8 | 6, 7 | ssexd 5243 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → 𝑉 ∈ V) |
9 | | f1oi 6737 |
. . . . 5
⊢ ( I
↾ 𝑉):𝑉–1-1-onto→𝑉 |
10 | | f1of 6700 |
. . . . 5
⊢ (( I
↾ 𝑉):𝑉–1-1-onto→𝑉 → ( I ↾ 𝑉):𝑉⟶𝑉) |
11 | 9, 10 | mp1i 13 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ( I ↾ 𝑉):𝑉⟶𝑉) |
12 | 11, 7 | fssd 6602 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ( I ↾ 𝑉):𝑉⟶𝐵) |
13 | | islinds5.r |
. . . 4
⊢ 𝐹 = (Scalar‘𝑊) |
14 | | islinds5.t |
. . . 4
⊢ · = (
·𝑠 ‘𝑊) |
15 | | islinds5.z |
. . . 4
⊢ 𝑂 = (0g‘𝑊) |
16 | | islinds5.y |
. . . 4
⊢ 0 =
(0g‘𝐹) |
17 | | eqid 2738 |
. . . 4
⊢
(Base‘(𝐹
freeLMod 𝑉)) =
(Base‘(𝐹 freeLMod
𝑉)) |
18 | 1, 13, 14, 15, 16, 17 | islindf4 20955 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ∈ V ∧ ( I ↾
𝑉):𝑉⟶𝐵) → (( I ↾ 𝑉) LIndF 𝑊 ↔ ∀𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉))((𝑊 Σg (𝑎 ∘f · ( I
↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 })))) |
19 | 4, 8, 12, 18 | syl3anc 1369 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (( I ↾ 𝑉) LIndF 𝑊 ↔ ∀𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉))((𝑊 Σg (𝑎 ∘f · ( I
↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 })))) |
20 | 13 | fvexi 6770 |
. . . . . 6
⊢ 𝐹 ∈ V |
21 | | eqid 2738 |
. . . . . . 7
⊢ (𝐹 freeLMod 𝑉) = (𝐹 freeLMod 𝑉) |
22 | | islinds5.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝐹) |
23 | 21, 22, 16, 17 | frlmelbas 20873 |
. . . . . 6
⊢ ((𝐹 ∈ V ∧ 𝑉 ∈ V) → (𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉)) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ))) |
24 | 20, 8, 23 | sylancr 586 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉)) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ))) |
25 | 24 | imbi1d 341 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ((𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉)) → ((𝑊 Σg (𝑎 ∘f · ( I
↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))) ↔ ((𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg
(𝑎 ∘f
·
( I ↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))))) |
26 | | elmapfn 8611 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (𝐾 ↑m 𝑉) → 𝑎 Fn 𝑉) |
27 | 26 | ad2antrl 724 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → 𝑎 Fn 𝑉) |
28 | 12 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → ( I ↾
𝑉):𝑉⟶𝐵) |
29 | 28 | ffnd 6585 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → ( I ↾
𝑉) Fn 𝑉) |
30 | 8 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → 𝑉 ∈ V) |
31 | | inidm 4149 |
. . . . . . . . 9
⊢ (𝑉 ∩ 𝑉) = 𝑉 |
32 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) ∧ 𝑣 ∈ 𝑉) → (𝑎‘𝑣) = (𝑎‘𝑣)) |
33 | | fvresi 7027 |
. . . . . . . . . 10
⊢ (𝑣 ∈ 𝑉 → (( I ↾ 𝑉)‘𝑣) = 𝑣) |
34 | 33 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) ∧ 𝑣 ∈ 𝑉) → (( I ↾ 𝑉)‘𝑣) = 𝑣) |
35 | 27, 29, 30, 30, 31, 32, 34 | offval 7520 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → (𝑎 ∘f · ( I
↾ 𝑉)) = (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) |
36 | 35 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → (𝑊 Σg
(𝑎 ∘f
·
( I ↾ 𝑉))) = (𝑊 Σg
(𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣)))) |
37 | 36 | eqeq1d 2740 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → ((𝑊 Σg
(𝑎 ∘f
·
( I ↾ 𝑉))) = 𝑂 ↔ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂)) |
38 | 37 | imbi1d 341 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) ∧ (𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 )) → (((𝑊 Σg
(𝑎 ∘f
·
( I ↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 })) ↔ ((𝑊 Σg
(𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 })))) |
39 | 38 | pm5.74da 800 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (((𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg
(𝑎 ∘f
·
( I ↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))) ↔ ((𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg
(𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))))) |
40 | | impexp 450 |
. . . . . 6
⊢ (((𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg
(𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) → (𝑎 finSupp 0 → ((𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))))) |
41 | | impexp 450 |
. . . . . . 7
⊢ (((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 })) ↔ (𝑎 finSupp 0 → ((𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 })))) |
42 | 41 | imbi2i 335 |
. . . . . 6
⊢ ((𝑎 ∈ (𝐾 ↑m 𝑉) → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) → (𝑎 finSupp 0 → ((𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))))) |
43 | 40, 42 | bitr4i 277 |
. . . . 5
⊢ (((𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg
(𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 })))) |
44 | 43 | a1i 11 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (((𝑎 ∈ (𝐾 ↑m 𝑉) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg
(𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 }))))) |
45 | 25, 39, 44 | 3bitrd 304 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ((𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉)) → ((𝑊 Σg (𝑎 ∘f · ( I
↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝑉) → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 }))))) |
46 | 45 | ralbidv2 3118 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (∀𝑎 ∈ (Base‘(𝐹 freeLMod 𝑉))((𝑊 Σg (𝑎 ∘f · ( I
↾ 𝑉))) = 𝑂 → 𝑎 = (𝑉 × { 0 })) ↔ ∀𝑎 ∈ (𝐾 ↑m 𝑉)((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 })))) |
47 | 3, 19, 46 | 3bitrd 304 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → (𝑉 ∈ (LIndS‘𝑊) ↔ ∀𝑎 ∈ (𝐾 ↑m 𝑉)((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣 ∈ 𝑉 ↦ ((𝑎‘𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 })))) |