Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigo2 Structured version   Visualization version   GIF version

Theorem elbigo2 48532
Description: Properties of a function of order G(x) under certain assumptions. (Contributed by AV, 17-May-2020.)
Assertion
Ref Expression
elbigo2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
Distinct variable groups:   𝑥,𝐺,𝑚,𝑦   𝑚,𝐹,𝑥,𝑦   𝐴,𝑚,𝑥,𝑦   𝐵,𝑚,𝑥,𝑦

Proof of Theorem elbigo2
StepHypRef Expression
1 elbigo 48531 . . . 4 (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
2 df-3an 1088 . . . 4 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ)) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
31, 2bitri 275 . . 3 (𝐹 ∈ (Ο‘𝐺) ↔ ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ)) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
4 reex 11220 . . . . . . 7 ℝ ∈ V
54, 4pm3.2i 470 . . . . . 6 (ℝ ∈ V ∧ ℝ ∈ V)
65a1i 11 . . . . 5 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → (ℝ ∈ V ∧ ℝ ∈ V))
7 simpl 482 . . . . . 6 ((𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) → 𝐹:𝐵⟶ℝ)
87adantl 481 . . . . 5 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → 𝐹:𝐵⟶ℝ)
9 sstr2 3965 . . . . . . . 8 (𝐵𝐴 → (𝐴 ⊆ ℝ → 𝐵 ⊆ ℝ))
109adantld 490 . . . . . . 7 (𝐵𝐴 → ((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐵 ⊆ ℝ))
1110adantl 481 . . . . . 6 ((𝐹:𝐵⟶ℝ ∧ 𝐵𝐴) → ((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐵 ⊆ ℝ))
1211impcom 407 . . . . 5 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → 𝐵 ⊆ ℝ)
13 elpm2r 8859 . . . . 5 (((ℝ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ ℝ)) → 𝐹 ∈ (ℝ ↑pm ℝ))
146, 8, 12, 13syl12anc 836 . . . 4 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → 𝐹 ∈ (ℝ ↑pm ℝ))
15 simpl 482 . . . . 5 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → (𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ))
16 elpm2r 8859 . . . . 5 (((ℝ ∈ V ∧ ℝ ∈ V) ∧ (𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ)) → 𝐺 ∈ (ℝ ↑pm ℝ))
176, 15, 16syl2anc 584 . . . 4 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → 𝐺 ∈ (ℝ ↑pm ℝ))
18 ibar 528 . . . . 5 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ)) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ)) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
1918bicomd 223 . . . 4 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ)) → (((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ)) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
2014, 17, 19syl2anc 584 . . 3 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → (((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ)) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
213, 20bitrid 283 . 2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
22 elin 3942 . . . . . . . 8 (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)))
23 fdm 6715 . . . . . . . . . . . . 13 (𝐹:𝐵⟶ℝ → dom 𝐹 = 𝐵)
2423ad2antrl 728 . . . . . . . . . . . 12 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → dom 𝐹 = 𝐵)
2524ad2antrr 726 . . . . . . . . . . 11 (((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → dom 𝐹 = 𝐵)
2625eleq2d 2820 . . . . . . . . . 10 (((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ dom 𝐹𝑦𝐵))
2726anbi1d 631 . . . . . . . . 9 (((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐵𝑦 ∈ (𝑥[,)+∞))))
28 elicopnf 13462 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦)))
2928ad3antlr 731 . . . . . . . . . . 11 ((((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐵) → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦)))
3012ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → 𝐵 ⊆ ℝ)
3130sselda 3958 . . . . . . . . . . . 12 ((((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐵) → 𝑦 ∈ ℝ)
3231biantrurd 532 . . . . . . . . . . 11 ((((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐵) → (𝑥𝑦 ↔ (𝑦 ∈ ℝ ∧ 𝑥𝑦)))
3329, 32bitr4d 282 . . . . . . . . . 10 ((((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦𝐵) → (𝑦 ∈ (𝑥[,)+∞) ↔ 𝑥𝑦))
3433pm5.32da 579 . . . . . . . . 9 (((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦𝐵𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐵𝑥𝑦)))
3527, 34bitrd 279 . . . . . . . 8 (((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦𝐵𝑥𝑦)))
3622, 35bitrid 283 . . . . . . 7 (((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦𝐵𝑥𝑦)))
3736imbi1d 341 . . . . . 6 (((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ ((𝑦𝐵𝑥𝑦) → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
38 impexp 450 . . . . . 6 (((𝑦𝐵𝑥𝑦) → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ (𝑦𝐵 → (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
3937, 38bitrdi 287 . . . . 5 (((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ (𝑦𝐵 → (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))))
4039ralbidv2 3159 . . . 4 (((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ∀𝑦𝐵 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
4140rexbidva 3162 . . 3 ((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) ∧ 𝑥 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ∃𝑚 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
4241rexbidva 3162 . 2 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
4321, 42bitrd 279 1 (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦 → (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cin 3925  wss 3926   class class class wbr 5119  dom cdm 5654  wf 6527  cfv 6531  (class class class)co 7405  pm cpm 8841  cr 11128   · cmul 11134  +∞cpnf 11266  cle 11270  [,)cico 13364  Οcbigo 48527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-ico 13368  df-bigo 48528
This theorem is referenced by:  elbigo2r  48533  elbigoimp  48536  elbigolo1  48537
  Copyright terms: Public domain W3C validator