Proof of Theorem elbigo2
Step | Hyp | Ref
| Expression |
1 | | elbigo 45849 |
. . . 4
⊢ (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm
ℝ) ∧ 𝐺 ∈
(ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
2 | | df-3an 1087 |
. . . 4
⊢ ((𝐹 ∈ (ℝ
↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm
ℝ) ∧ ∃𝑥
∈ ℝ ∃𝑚
∈ ℝ ∀𝑦
∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))) ↔ ((𝐹 ∈ (ℝ ↑pm
ℝ) ∧ 𝐺 ∈
(ℝ ↑pm ℝ)) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
3 | 1, 2 | bitri 274 |
. . 3
⊢ (𝐹 ∈ (Ο‘𝐺) ↔ ((𝐹 ∈ (ℝ ↑pm
ℝ) ∧ 𝐺 ∈
(ℝ ↑pm ℝ)) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
4 | | reex 10946 |
. . . . . . 7
⊢ ℝ
∈ V |
5 | 4, 4 | pm3.2i 470 |
. . . . . 6
⊢ (ℝ
∈ V ∧ ℝ ∈ V) |
6 | 5 | a1i 11 |
. . . . 5
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → (ℝ ∈ V ∧ ℝ
∈ V)) |
7 | | simpl 482 |
. . . . . 6
⊢ ((𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) → 𝐹:𝐵⟶ℝ) |
8 | 7 | adantl 481 |
. . . . 5
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → 𝐹:𝐵⟶ℝ) |
9 | | sstr2 3932 |
. . . . . . . 8
⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ ℝ → 𝐵 ⊆ ℝ)) |
10 | 9 | adantld 490 |
. . . . . . 7
⊢ (𝐵 ⊆ 𝐴 → ((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐵 ⊆ ℝ)) |
11 | 10 | adantl 481 |
. . . . . 6
⊢ ((𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴) → ((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → 𝐵 ⊆ ℝ)) |
12 | 11 | impcom 407 |
. . . . 5
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → 𝐵 ⊆ ℝ) |
13 | | elpm2r 8607 |
. . . . 5
⊢
(((ℝ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ ℝ)) → 𝐹 ∈ (ℝ ↑pm
ℝ)) |
14 | 6, 8, 12, 13 | syl12anc 833 |
. . . 4
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → 𝐹 ∈ (ℝ ↑pm
ℝ)) |
15 | | simpl 482 |
. . . . 5
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → (𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ)) |
16 | | elpm2r 8607 |
. . . . 5
⊢
(((ℝ ∈ V ∧ ℝ ∈ V) ∧ (𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ)) → 𝐺 ∈ (ℝ ↑pm
ℝ)) |
17 | 6, 15, 16 | syl2anc 583 |
. . . 4
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → 𝐺 ∈ (ℝ ↑pm
ℝ)) |
18 | | ibar 528 |
. . . . 5
⊢ ((𝐹 ∈ (ℝ
↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm
ℝ)) → (∃𝑥
∈ ℝ ∃𝑚
∈ ℝ ∀𝑦
∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)) ↔ ((𝐹 ∈ (ℝ ↑pm
ℝ) ∧ 𝐺 ∈
(ℝ ↑pm ℝ)) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) |
19 | 18 | bicomd 222 |
. . . 4
⊢ ((𝐹 ∈ (ℝ
↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm
ℝ)) → (((𝐹
∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm
ℝ)) ∧ ∃𝑥
∈ ℝ ∃𝑚
∈ ℝ ∀𝑦
∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
20 | 14, 17, 19 | syl2anc 583 |
. . 3
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → (((𝐹 ∈ (ℝ ↑pm
ℝ) ∧ 𝐺 ∈
(ℝ ↑pm ℝ)) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
21 | 3, 20 | syl5bb 282 |
. 2
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))) |
22 | | elin 3907 |
. . . . . . . 8
⊢ (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ (𝑥[,)+∞))) |
23 | | fdm 6605 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐵⟶ℝ → dom 𝐹 = 𝐵) |
24 | 23 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → dom 𝐹 = 𝐵) |
25 | 24 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
(((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → dom 𝐹 = 𝐵) |
26 | 25 | eleq2d 2825 |
. . . . . . . . . 10
⊢
(((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐵)) |
27 | 26 | anbi1d 629 |
. . . . . . . . 9
⊢
(((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝑥[,)+∞)))) |
28 | | elicopnf 13159 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦))) |
29 | 28 | ad3antlr 727 |
. . . . . . . . . . 11
⊢
((((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦 ∈ 𝐵) → (𝑦 ∈ (𝑥[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦))) |
30 | 12 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢
(((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → 𝐵 ⊆ ℝ) |
31 | 30 | sselda 3925 |
. . . . . . . . . . . 12
⊢
((((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℝ) |
32 | 31 | biantrurd 532 |
. . . . . . . . . . 11
⊢
((((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 ↔ (𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦))) |
33 | 29, 32 | bitr4d 281 |
. . . . . . . . . 10
⊢
((((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑦 ∈ 𝐵) → (𝑦 ∈ (𝑥[,)+∞) ↔ 𝑥 ≤ 𝑦)) |
34 | 33 | pm5.32da 578 |
. . . . . . . . 9
⊢
(((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦))) |
35 | 27, 34 | bitrd 278 |
. . . . . . . 8
⊢
(((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ dom 𝐹 ∧ 𝑦 ∈ (𝑥[,)+∞)) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦))) |
36 | 22, 35 | syl5bb 282 |
. . . . . . 7
⊢
(((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦))) |
37 | 36 | imbi1d 341 |
. . . . . 6
⊢
(((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) |
38 | | impexp 450 |
. . . . . 6
⊢ (((𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))) ↔ (𝑦 ∈ 𝐵 → (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) |
39 | 37, 38 | bitrdi 286 |
. . . . 5
⊢
(((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → ((𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞)) → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))) ↔ (𝑦 ∈ 𝐵 → (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)))))) |
40 | 39 | ralbidv2 3120 |
. . . 4
⊢
(((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) |
41 | 40 | rexbidva 3226 |
. . 3
⊢ ((((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) ∧ 𝑥 ∈ ℝ) → (∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)) ↔ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) |
42 | 41 | rexbidva 3226 |
. 2
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) |
43 | 21, 42 | bitrd 278 |
1
⊢ (((𝐺:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐹:𝐵⟶ℝ ∧ 𝐵 ⊆ 𝐴)) → (𝐹 ∈ (Ο‘𝐺) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → (𝐹‘𝑦) ≤ (𝑚 · (𝐺‘𝑦))))) |