MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raluz Structured version   Visualization version   GIF version

Theorem raluz 12794
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
raluz (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem raluz
StepHypRef Expression
1 eluz1 12736 . . . 4 (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ𝑀) ↔ (𝑛 ∈ ℤ ∧ 𝑀𝑛)))
21imbi1d 341 . . 3 (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ𝑀) → 𝜑) ↔ ((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑)))
3 impexp 450 . . 3 (((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀𝑛𝜑)))
42, 3bitrdi 287 . 2 (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀𝑛𝜑))))
54ralbidv2 3151 1 (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047   class class class wbr 5089  cfv 6481  cle 11147  cz 12468  cuz 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-cnex 11062  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-neg 11347  df-z 12469  df-uz 12733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator