Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raluz | Structured version Visualization version GIF version |
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
raluz | ⊢ (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 12568 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑛 ∈ (ℤ≥‘𝑀) ↔ (𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛))) | |
2 | 1 | imbi1d 341 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ ((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑))) |
3 | impexp 450 | . . 3 ⊢ (((𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑))) | |
4 | 2, 3 | bitrdi 286 | . 2 ⊢ (𝑀 ∈ ℤ → ((𝑛 ∈ (ℤ≥‘𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ≤ 𝑛 → 𝜑)))) |
5 | 4 | ralbidv2 3120 | 1 ⊢ (𝑀 ∈ ℤ → (∀𝑛 ∈ (ℤ≥‘𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ≤ 𝑛 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2109 ∀wral 3065 class class class wbr 5078 ‘cfv 6430 ≤ cle 10994 ℤcz 12302 ℤ≥cuz 12564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-neg 11191 df-z 12303 df-uz 12565 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |