MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp Structured version   Visualization version   GIF version

Theorem metcnp 22555
Description: Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcnp ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Distinct variable groups:   𝑦,𝑤,𝑧,𝐹   𝑤,𝐽,𝑦,𝑧   𝑤,𝐾,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧   𝑤,𝑌,𝑦,𝑧   𝑤,𝐶,𝑦,𝑧   𝑤,𝐷,𝑦,𝑧   𝑤,𝑃,𝑦,𝑧

Proof of Theorem metcnp
StepHypRef Expression
1 metcn.2 . . 3 𝐽 = (MetOpen‘𝐶)
2 metcn.4 . . 3 𝐾 = (MetOpen‘𝐷)
31, 2metcnp3 22554 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
4 ffun 6256 . . . . . . . . 9 (𝐹:𝑋𝑌 → Fun 𝐹)
54ad2antlr 709 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → Fun 𝐹)
6 simpll1 1262 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐶 ∈ (∞Met‘𝑋))
7 simpll3 1266 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑃𝑋)
8 rpxr 12050 . . . . . . . . . . 11 (𝑧 ∈ ℝ+𝑧 ∈ ℝ*)
98ad2antll 711 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ*)
10 blssm 22432 . . . . . . . . . 10 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑧) ⊆ 𝑋)
116, 7, 9, 10syl3anc 1483 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑃(ball‘𝐶)𝑧) ⊆ 𝑋)
12 fdm 6261 . . . . . . . . . 10 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1312ad2antlr 709 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → dom 𝐹 = 𝑋)
1411, 13sseqtr4d 3836 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑃(ball‘𝐶)𝑧) ⊆ dom 𝐹)
15 funimass4 6465 . . . . . . . 8 ((Fun 𝐹 ∧ (𝑃(ball‘𝐶)𝑧) ⊆ dom 𝐹) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤 ∈ (𝑃(ball‘𝐶)𝑧)(𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)))
165, 14, 15syl2anc 575 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤 ∈ (𝑃(ball‘𝐶)𝑧)(𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)))
17 elbl 22402 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧 ∈ ℝ*) → (𝑤 ∈ (𝑃(ball‘𝐶)𝑧) ↔ (𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧)))
186, 7, 9, 17syl3anc 1483 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (𝑤 ∈ (𝑃(ball‘𝐶)𝑧) ↔ (𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧)))
1918imbi1d 332 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑤 ∈ (𝑃(ball‘𝐶)𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ ((𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))))
20 impexp 439 . . . . . . . . . 10 (((𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))))
21 simpl2 1237 . . . . . . . . . . . . . 14 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → 𝐷 ∈ (∞Met‘𝑌))
2221ad2antrr 708 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝐷 ∈ (∞Met‘𝑌))
23 simplrl 786 . . . . . . . . . . . . . 14 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝑦 ∈ ℝ+)
2423rpxrd 12083 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝑦 ∈ ℝ*)
25 simpllr 784 . . . . . . . . . . . . . 14 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝐹:𝑋𝑌)
267adantr 468 . . . . . . . . . . . . . 14 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → 𝑃𝑋)
2725, 26ffvelrnd 6579 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → (𝐹𝑃) ∈ 𝑌)
28 simplr 776 . . . . . . . . . . . . . 14 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → 𝐹:𝑋𝑌)
2928ffvelrnda 6578 . . . . . . . . . . . . 13 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → (𝐹𝑤) ∈ 𝑌)
30 elbl2 22404 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑌) ∧ 𝑦 ∈ ℝ*) ∧ ((𝐹𝑃) ∈ 𝑌 ∧ (𝐹𝑤) ∈ 𝑌)) → ((𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))
3122, 24, 27, 29, 30syl22anc 858 . . . . . . . . . . . 12 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → ((𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))
3231imbi2d 331 . . . . . . . . . . 11 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) ∧ 𝑤𝑋) → (((𝑃𝐶𝑤) < 𝑧 → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3332pm5.74da 829 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦))) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
3420, 33syl5bb 274 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (((𝑤𝑋 ∧ (𝑃𝐶𝑤) < 𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
3519, 34bitrd 270 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝑤 ∈ (𝑃(ball‘𝐶)𝑧) → (𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝑤𝑋 → ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
3635ralbidv2 3171 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → (∀𝑤 ∈ (𝑃(ball‘𝐶)𝑧)(𝐹𝑤) ∈ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3716, 36bitrd 270 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ (𝑦 ∈ ℝ+𝑧 ∈ ℝ+)) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3837anassrs 455 . . . . 5 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+) → ((𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
3938rexbidva 3236 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑦 ∈ ℝ+) → (∃𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
4039ralbidva 3172 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦)))
4140pm5.32da 570 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
423, 41bitrd 270 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2158  wral 3095  wrex 3096  wss 3766   class class class wbr 4840  dom cdm 5308  cima 5311  Fun wfun 6092  wf 6094  cfv 6098  (class class class)co 6871  *cxr 10355   < clt 10356  +crp 12042  ∞Metcxmt 19935  ballcbl 19937  MetOpencmopn 19940   CnP ccnp 21239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176  ax-cnex 10274  ax-resscn 10275  ax-1cn 10276  ax-icn 10277  ax-addcl 10278  ax-addrcl 10279  ax-mulcl 10280  ax-mulrcl 10281  ax-mulcom 10282  ax-addass 10283  ax-mulass 10284  ax-distr 10285  ax-i2m1 10286  ax-1ne0 10287  ax-1rid 10288  ax-rnegex 10289  ax-rrecex 10290  ax-cnre 10291  ax-pre-lttri 10292  ax-pre-lttrn 10293  ax-pre-ltadd 10294  ax-pre-mulgt0 10295  ax-pre-sup 10296
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-nel 3081  df-ral 3100  df-rex 3101  df-reu 3102  df-rmo 3103  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-iun 4710  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-om 7293  df-1st 7395  df-2nd 7396  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-er 7976  df-map 8091  df-en 8190  df-dom 8191  df-sdom 8192  df-sup 8584  df-inf 8585  df-pnf 10358  df-mnf 10359  df-xr 10360  df-ltxr 10361  df-le 10362  df-sub 10550  df-neg 10551  df-div 10967  df-nn 11303  df-2 11360  df-n0 11556  df-z 11640  df-uz 11901  df-q 12004  df-rp 12043  df-xneg 12158  df-xadd 12159  df-xmul 12160  df-topgen 16305  df-psmet 19942  df-xmet 19943  df-bl 19945  df-mopn 19946  df-top 20908  df-topon 20925  df-bases 20960  df-cnp 21242
This theorem is referenced by:  metcnp2  22556  metcn  22557  metcnpi  22558  txmetcnp  22561  abelth  24405  qqhcn  30357
  Copyright terms: Public domain W3C validator