MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp Structured version   Visualization version   GIF version

Theorem metcnp 24041
Description: Two ways to say a mapping from metric 𝐢 to metric 𝐷 is continuous at point 𝑃. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpenβ€˜πΆ)
metcn.4 𝐾 = (MetOpenβ€˜π·)
Assertion
Ref Expression
metcnp ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
Distinct variable groups:   𝑦,𝑀,𝑧,𝐹   𝑀,𝐽,𝑦,𝑧   𝑀,𝐾,𝑦,𝑧   𝑀,𝑋,𝑦,𝑧   𝑀,π‘Œ,𝑦,𝑧   𝑀,𝐢,𝑦,𝑧   𝑀,𝐷,𝑦,𝑧   𝑀,𝑃,𝑦,𝑧

Proof of Theorem metcnp
StepHypRef Expression
1 metcn.2 . . 3 𝐽 = (MetOpenβ€˜πΆ)
2 metcn.4 . . 3 𝐾 = (MetOpenβ€˜π·)
31, 2metcnp3 24040 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ (𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦))))
4 ffun 6717 . . . . . . . . 9 (𝐹:π‘‹βŸΆπ‘Œ β†’ Fun 𝐹)
54ad2antlr 725 . . . . . . . 8 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ Fun 𝐹)
6 simpll1 1212 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
7 simpll3 1214 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ 𝑃 ∈ 𝑋)
8 rpxr 12979 . . . . . . . . . . 11 (𝑧 ∈ ℝ+ β†’ 𝑧 ∈ ℝ*)
98ad2antll 727 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ 𝑧 ∈ ℝ*)
10 blssm 23915 . . . . . . . . . 10 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ*) β†’ (𝑃(ballβ€˜πΆ)𝑧) βŠ† 𝑋)
116, 7, 9, 10syl3anc 1371 . . . . . . . . 9 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (𝑃(ballβ€˜πΆ)𝑧) βŠ† 𝑋)
12 fdm 6723 . . . . . . . . . 10 (𝐹:π‘‹βŸΆπ‘Œ β†’ dom 𝐹 = 𝑋)
1312ad2antlr 725 . . . . . . . . 9 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ dom 𝐹 = 𝑋)
1411, 13sseqtrrd 4022 . . . . . . . 8 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (𝑃(ballβ€˜πΆ)𝑧) βŠ† dom 𝐹)
15 funimass4 6953 . . . . . . . 8 ((Fun 𝐹 ∧ (𝑃(ballβ€˜πΆ)𝑧) βŠ† dom 𝐹) β†’ ((𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆ€π‘€ ∈ (𝑃(ballβ€˜πΆ)𝑧)(πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)))
165, 14, 15syl2anc 584 . . . . . . 7 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ ((𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆ€π‘€ ∈ (𝑃(ballβ€˜πΆ)𝑧)(πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)))
17 elbl 23885 . . . . . . . . . . 11 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ*) β†’ (𝑀 ∈ (𝑃(ballβ€˜πΆ)𝑧) ↔ (𝑀 ∈ 𝑋 ∧ (𝑃𝐢𝑀) < 𝑧)))
186, 7, 9, 17syl3anc 1371 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (𝑀 ∈ (𝑃(ballβ€˜πΆ)𝑧) ↔ (𝑀 ∈ 𝑋 ∧ (𝑃𝐢𝑀) < 𝑧)))
1918imbi1d 341 . . . . . . . . 9 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ ((𝑀 ∈ (𝑃(ballβ€˜πΆ)𝑧) β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)) ↔ ((𝑀 ∈ 𝑋 ∧ (𝑃𝐢𝑀) < 𝑧) β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦))))
20 impexp 451 . . . . . . . . . 10 (((𝑀 ∈ 𝑋 ∧ (𝑃𝐢𝑀) < 𝑧) β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)) ↔ (𝑀 ∈ 𝑋 β†’ ((𝑃𝐢𝑀) < 𝑧 β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦))))
21 simpl2 1192 . . . . . . . . . . . . . 14 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
2221ad2antrr 724 . . . . . . . . . . . . 13 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
23 simplrl 775 . . . . . . . . . . . . . 14 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝑦 ∈ ℝ+)
2423rpxrd 13013 . . . . . . . . . . . . 13 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝑦 ∈ ℝ*)
25 simpllr 774 . . . . . . . . . . . . . 14 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
267adantr 481 . . . . . . . . . . . . . 14 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝑃 ∈ 𝑋)
2725, 26ffvelcdmd 7084 . . . . . . . . . . . . 13 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘ƒ) ∈ π‘Œ)
28 simplr 767 . . . . . . . . . . . . . 14 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
2928ffvelcdmda 7083 . . . . . . . . . . . . 13 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘€) ∈ π‘Œ)
30 elbl2 23887 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑦 ∈ ℝ*) ∧ ((πΉβ€˜π‘ƒ) ∈ π‘Œ ∧ (πΉβ€˜π‘€) ∈ π‘Œ)) β†’ ((πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))
3122, 24, 27, 29, 30syl22anc 837 . . . . . . . . . . . 12 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))
3231imbi2d 340 . . . . . . . . . . 11 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (((𝑃𝐢𝑀) < 𝑧 β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)) ↔ ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)))
3332pm5.74da 802 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ ((𝑀 ∈ 𝑋 β†’ ((𝑃𝐢𝑀) < 𝑧 β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦))) ↔ (𝑀 ∈ 𝑋 β†’ ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
3420, 33bitrid 282 . . . . . . . . 9 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (((𝑀 ∈ 𝑋 ∧ (𝑃𝐢𝑀) < 𝑧) β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)) ↔ (𝑀 ∈ 𝑋 β†’ ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
3519, 34bitrd 278 . . . . . . . 8 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ ((𝑀 ∈ (𝑃(ballβ€˜πΆ)𝑧) β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)) ↔ (𝑀 ∈ 𝑋 β†’ ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
3635ralbidv2 3173 . . . . . . 7 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (βˆ€π‘€ ∈ (𝑃(ballβ€˜πΆ)𝑧)(πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)))
3716, 36bitrd 278 . . . . . 6 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ ((𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)))
3837anassrs 468 . . . . 5 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+) β†’ ((𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)))
3938rexbidva 3176 . . . 4 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝑦 ∈ ℝ+) β†’ (βˆƒπ‘§ ∈ ℝ+ (𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)))
4039ralbidva 3175 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ (𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)))
4140pm5.32da 579 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ (𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
423, 41bitrd 278 1 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   βŠ† wss 3947   class class class wbr 5147  dom cdm 5675   β€œ cima 5678  Fun wfun 6534  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  β„*cxr 11243   < clt 11244  β„+crp 12970  βˆžMetcxmet 20921  ballcbl 20923  MetOpencmopn 20926   CnP ccnp 22720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-topgen 17385  df-psmet 20928  df-xmet 20929  df-bl 20931  df-mopn 20932  df-top 22387  df-topon 22404  df-bases 22440  df-cnp 22723
This theorem is referenced by:  metcnp2  24042  metcn  24043  metcnpi  24044  txmetcnp  24047  abelth  25944  qqhcn  32959
  Copyright terms: Public domain W3C validator