MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp Structured version   Visualization version   GIF version

Theorem metcnp 23913
Description: Two ways to say a mapping from metric 𝐢 to metric 𝐷 is continuous at point 𝑃. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpenβ€˜πΆ)
metcn.4 𝐾 = (MetOpenβ€˜π·)
Assertion
Ref Expression
metcnp ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
Distinct variable groups:   𝑦,𝑀,𝑧,𝐹   𝑀,𝐽,𝑦,𝑧   𝑀,𝐾,𝑦,𝑧   𝑀,𝑋,𝑦,𝑧   𝑀,π‘Œ,𝑦,𝑧   𝑀,𝐢,𝑦,𝑧   𝑀,𝐷,𝑦,𝑧   𝑀,𝑃,𝑦,𝑧

Proof of Theorem metcnp
StepHypRef Expression
1 metcn.2 . . 3 𝐽 = (MetOpenβ€˜πΆ)
2 metcn.4 . . 3 𝐾 = (MetOpenβ€˜π·)
31, 2metcnp3 23912 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ (𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦))))
4 ffun 6676 . . . . . . . . 9 (𝐹:π‘‹βŸΆπ‘Œ β†’ Fun 𝐹)
54ad2antlr 726 . . . . . . . 8 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ Fun 𝐹)
6 simpll1 1213 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
7 simpll3 1215 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ 𝑃 ∈ 𝑋)
8 rpxr 12931 . . . . . . . . . . 11 (𝑧 ∈ ℝ+ β†’ 𝑧 ∈ ℝ*)
98ad2antll 728 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ 𝑧 ∈ ℝ*)
10 blssm 23787 . . . . . . . . . 10 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ*) β†’ (𝑃(ballβ€˜πΆ)𝑧) βŠ† 𝑋)
116, 7, 9, 10syl3anc 1372 . . . . . . . . 9 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (𝑃(ballβ€˜πΆ)𝑧) βŠ† 𝑋)
12 fdm 6682 . . . . . . . . . 10 (𝐹:π‘‹βŸΆπ‘Œ β†’ dom 𝐹 = 𝑋)
1312ad2antlr 726 . . . . . . . . 9 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ dom 𝐹 = 𝑋)
1411, 13sseqtrrd 3990 . . . . . . . 8 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (𝑃(ballβ€˜πΆ)𝑧) βŠ† dom 𝐹)
15 funimass4 6912 . . . . . . . 8 ((Fun 𝐹 ∧ (𝑃(ballβ€˜πΆ)𝑧) βŠ† dom 𝐹) β†’ ((𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆ€π‘€ ∈ (𝑃(ballβ€˜πΆ)𝑧)(πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)))
165, 14, 15syl2anc 585 . . . . . . 7 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ ((𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆ€π‘€ ∈ (𝑃(ballβ€˜πΆ)𝑧)(πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)))
17 elbl 23757 . . . . . . . . . . 11 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ ℝ*) β†’ (𝑀 ∈ (𝑃(ballβ€˜πΆ)𝑧) ↔ (𝑀 ∈ 𝑋 ∧ (𝑃𝐢𝑀) < 𝑧)))
186, 7, 9, 17syl3anc 1372 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (𝑀 ∈ (𝑃(ballβ€˜πΆ)𝑧) ↔ (𝑀 ∈ 𝑋 ∧ (𝑃𝐢𝑀) < 𝑧)))
1918imbi1d 342 . . . . . . . . 9 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ ((𝑀 ∈ (𝑃(ballβ€˜πΆ)𝑧) β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)) ↔ ((𝑀 ∈ 𝑋 ∧ (𝑃𝐢𝑀) < 𝑧) β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦))))
20 impexp 452 . . . . . . . . . 10 (((𝑀 ∈ 𝑋 ∧ (𝑃𝐢𝑀) < 𝑧) β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)) ↔ (𝑀 ∈ 𝑋 β†’ ((𝑃𝐢𝑀) < 𝑧 β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦))))
21 simpl2 1193 . . . . . . . . . . . . . 14 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
2221ad2antrr 725 . . . . . . . . . . . . 13 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
23 simplrl 776 . . . . . . . . . . . . . 14 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝑦 ∈ ℝ+)
2423rpxrd 12965 . . . . . . . . . . . . 13 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝑦 ∈ ℝ*)
25 simpllr 775 . . . . . . . . . . . . . 14 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
267adantr 482 . . . . . . . . . . . . . 14 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝑃 ∈ 𝑋)
2725, 26ffvelcdmd 7041 . . . . . . . . . . . . 13 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘ƒ) ∈ π‘Œ)
28 simplr 768 . . . . . . . . . . . . . 14 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
2928ffvelcdmda 7040 . . . . . . . . . . . . 13 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘€) ∈ π‘Œ)
30 elbl2 23759 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑦 ∈ ℝ*) ∧ ((πΉβ€˜π‘ƒ) ∈ π‘Œ ∧ (πΉβ€˜π‘€) ∈ π‘Œ)) β†’ ((πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))
3122, 24, 27, 29, 30syl22anc 838 . . . . . . . . . . . 12 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))
3231imbi2d 341 . . . . . . . . . . 11 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (((𝑃𝐢𝑀) < 𝑧 β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)) ↔ ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)))
3332pm5.74da 803 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ ((𝑀 ∈ 𝑋 β†’ ((𝑃𝐢𝑀) < 𝑧 β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦))) ↔ (𝑀 ∈ 𝑋 β†’ ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
3420, 33bitrid 283 . . . . . . . . 9 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (((𝑀 ∈ 𝑋 ∧ (𝑃𝐢𝑀) < 𝑧) β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)) ↔ (𝑀 ∈ 𝑋 β†’ ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
3519, 34bitrd 279 . . . . . . . 8 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ ((𝑀 ∈ (𝑃(ballβ€˜πΆ)𝑧) β†’ (πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)) ↔ (𝑀 ∈ 𝑋 β†’ ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
3635ralbidv2 3171 . . . . . . 7 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (βˆ€π‘€ ∈ (𝑃(ballβ€˜πΆ)𝑧)(πΉβ€˜π‘€) ∈ ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)))
3716, 36bitrd 279 . . . . . 6 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ ((𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)))
3837anassrs 469 . . . . 5 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+) β†’ ((𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)))
3938rexbidva 3174 . . . 4 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝑦 ∈ ℝ+) β†’ (βˆƒπ‘§ ∈ ℝ+ (𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)))
4039ralbidva 3173 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ (𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦) ↔ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)))
4140pm5.32da 580 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ (𝐹 β€œ (𝑃(ballβ€˜πΆ)𝑧)) βŠ† ((πΉβ€˜π‘ƒ)(ballβ€˜π·)𝑦)) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
423, 41bitrd 279 1 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3065  βˆƒwrex 3074   βŠ† wss 3915   class class class wbr 5110  dom cdm 5638   β€œ cima 5641  Fun wfun 6495  βŸΆwf 6497  β€˜cfv 6501  (class class class)co 7362  β„*cxr 11195   < clt 11196  β„+crp 12922  βˆžMetcxmet 20797  ballcbl 20799  MetOpencmopn 20802   CnP ccnp 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-inf 9386  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-q 12881  df-rp 12923  df-xneg 13040  df-xadd 13041  df-xmul 13042  df-topgen 17332  df-psmet 20804  df-xmet 20805  df-bl 20807  df-mopn 20808  df-top 22259  df-topon 22276  df-bases 22312  df-cnp 22595
This theorem is referenced by:  metcnp2  23914  metcn  23915  metcnpi  23916  txmetcnp  23919  abelth  25816  qqhcn  32612
  Copyright terms: Public domain W3C validator