| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islbs5 | Structured version Visualization version GIF version | ||
| Description: An equivalent formulation of the basis predicate in a vector space, using a function 𝐹 for generating the base. (Contributed by Thierry Arnoux, 20-Feb-2025.) |
| Ref | Expression |
|---|---|
| islbs5.b | ⊢ 𝐵 = (Base‘𝑊) |
| islbs5.k | ⊢ 𝐾 = (Base‘𝑆) |
| islbs5.r | ⊢ 𝑆 = (Scalar‘𝑊) |
| islbs5.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| islbs5.z | ⊢ 𝑂 = (0g‘𝑊) |
| islbs5.y | ⊢ 0 = (0g‘𝑆) |
| islbs5.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| islbs5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| islbs5.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| islbs5.s | ⊢ (𝜑 → 𝑆 ∈ NzRing) |
| islbs5.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| islbs5.f | ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) |
| Ref | Expression |
|---|---|
| islbs5 | ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (∀𝑎 ∈ (𝐾 ↑m 𝐼)((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂) → 𝑎 = (𝐼 × { 0 })) ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islbs5.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 2 | eqid 2733 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 3 | islbs5.r | . . 3 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 4 | islbs5.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | islbs5.z | . . 3 ⊢ 𝑂 = (0g‘𝑊) | |
| 6 | islbs5.y | . . 3 ⊢ 0 = (0g‘𝑆) | |
| 7 | islbs5.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 8 | islbs5.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 9 | islbs5.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ NzRing) | |
| 10 | islbs5.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 11 | islbs5.f | . . 3 ⊢ (𝜑 → 𝐹:𝐼–1-1→𝐵) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | lindflbs 33388 | . 2 ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| 13 | f1f 6727 | . . . . . 6 ⊢ (𝐹:𝐼–1-1→𝐵 → 𝐹:𝐼⟶𝐵) | |
| 14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| 15 | eqid 2733 | . . . . . 6 ⊢ (Base‘(𝑆 freeLMod 𝐼)) = (Base‘(𝑆 freeLMod 𝐼)) | |
| 16 | 1, 3, 4, 5, 6, 15 | islindf4 21784 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑎 ∈ (Base‘(𝑆 freeLMod 𝐼))((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 })))) |
| 17 | 8, 10, 14, 16 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ ∀𝑎 ∈ (Base‘(𝑆 freeLMod 𝐼))((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 })))) |
| 18 | 9 | elexd 3461 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ V) |
| 19 | eqid 2733 | . . . . . . . . 9 ⊢ (𝑆 freeLMod 𝐼) = (𝑆 freeLMod 𝐼) | |
| 20 | islbs5.k | . . . . . . . . 9 ⊢ 𝐾 = (Base‘𝑆) | |
| 21 | 19, 20, 6, 15 | frlmelbas 21702 | . . . . . . . 8 ⊢ ((𝑆 ∈ V ∧ 𝐼 ∈ 𝑉) → (𝑎 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↔ (𝑎 ∈ (𝐾 ↑m 𝐼) ∧ 𝑎 finSupp 0 ))) |
| 22 | 18, 10, 21 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑎 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↔ (𝑎 ∈ (𝐾 ↑m 𝐼) ∧ 𝑎 finSupp 0 ))) |
| 23 | 22 | imbi1d 341 | . . . . . 6 ⊢ (𝜑 → ((𝑎 ∈ (Base‘(𝑆 freeLMod 𝐼)) → ((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 }))) ↔ ((𝑎 ∈ (𝐾 ↑m 𝐼) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 }))))) |
| 24 | impexp 450 | . . . . . . 7 ⊢ (((𝑎 ∈ (𝐾 ↑m 𝐼) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝐼) → (𝑎 finSupp 0 → ((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 }))))) | |
| 25 | impexp 450 | . . . . . . . . . 10 ⊢ (((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂) → 𝑎 = (𝐼 × { 0 })) ↔ (𝑎 finSupp 0 → ((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 })))) | |
| 26 | 25 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂) → 𝑎 = (𝐼 × { 0 })) ↔ (𝑎 finSupp 0 → ((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 }))))) |
| 27 | 26 | bicomd 223 | . . . . . . . 8 ⊢ (𝜑 → ((𝑎 finSupp 0 → ((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 }))) ↔ ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂) → 𝑎 = (𝐼 × { 0 })))) |
| 28 | 27 | imbi2d 340 | . . . . . . 7 ⊢ (𝜑 → ((𝑎 ∈ (𝐾 ↑m 𝐼) → (𝑎 finSupp 0 → ((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 })))) ↔ (𝑎 ∈ (𝐾 ↑m 𝐼) → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂) → 𝑎 = (𝐼 × { 0 }))))) |
| 29 | 24, 28 | bitrid 283 | . . . . . 6 ⊢ (𝜑 → (((𝑎 ∈ (𝐾 ↑m 𝐼) ∧ 𝑎 finSupp 0 ) → ((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝐼) → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂) → 𝑎 = (𝐼 × { 0 }))))) |
| 30 | 23, 29 | bitrd 279 | . . . . 5 ⊢ (𝜑 → ((𝑎 ∈ (Base‘(𝑆 freeLMod 𝐼)) → ((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 }))) ↔ (𝑎 ∈ (𝐾 ↑m 𝐼) → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂) → 𝑎 = (𝐼 × { 0 }))))) |
| 31 | 30 | ralbidv2 3152 | . . . 4 ⊢ (𝜑 → (∀𝑎 ∈ (Base‘(𝑆 freeLMod 𝐼))((𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂 → 𝑎 = (𝐼 × { 0 })) ↔ ∀𝑎 ∈ (𝐾 ↑m 𝐼)((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂) → 𝑎 = (𝐼 × { 0 })))) |
| 32 | 17, 31 | bitrd 279 | . . 3 ⊢ (𝜑 → (𝐹 LIndF 𝑊 ↔ ∀𝑎 ∈ (𝐾 ↑m 𝐼)((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂) → 𝑎 = (𝐼 × { 0 })))) |
| 33 | 32 | anbi1d 631 | . 2 ⊢ (𝜑 → ((𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵) ↔ (∀𝑎 ∈ (𝐾 ↑m 𝐼)((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂) → 𝑎 = (𝐼 × { 0 })) ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| 34 | 12, 33 | bitrd 279 | 1 ⊢ (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (∀𝑎 ∈ (𝐾 ↑m 𝐼)((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑎 ∘f · 𝐹)) = 𝑂) → 𝑎 = (𝐼 × { 0 })) ∧ (𝑁‘ran 𝐹) = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 {csn 4577 class class class wbr 5095 × cxp 5619 ran crn 5622 ⟶wf 6485 –1-1→wf1 6486 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 ↑m cmap 8759 finSupp cfsupp 9256 Basecbs 17127 Scalarcsca 17171 ·𝑠 cvsca 17172 0gc0g 17350 Σg cgsu 17351 NzRingcnzr 20436 LModclmod 20802 LSpanclspn 20913 LBasisclbs 21017 freeLMod cfrlm 21692 LIndF clindf 21750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-gsum 17353 df-prds 17358 df-pws 17360 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-nzr 20437 df-subrg 20494 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lmhm 20965 df-lbs 21018 df-sra 21116 df-rgmod 21117 df-dsmm 21678 df-frlm 21693 df-uvc 21729 df-lindf 21752 df-linds 21753 |
| This theorem is referenced by: ply1degltdimlem 33707 |
| Copyright terms: Public domain | W3C validator |