MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunifval Structured version   Visualization version   GIF version

Theorem itunifval 10360
Description: Function value of iterated unions. EDITORIAL: The iterated unions and order types of ordered sets are split out here because they could conceivably be independently useful. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunifval (𝐴𝑉 → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem itunifval
StepHypRef Expression
1 elex 3465 . 2 (𝐴𝑉𝐴 ∈ V)
2 rdgeq2 8362 . . . 4 (𝑥 = 𝐴 → rec((𝑦 ∈ V ↦ 𝑦), 𝑥) = rec((𝑦 ∈ V ↦ 𝑦), 𝐴))
32reseq1d 5940 . . 3 (𝑥 = 𝐴 → (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
4 ituni.u . . 3 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
5 rdgfun 8366 . . . 4 Fun rec((𝑦 ∈ V ↦ 𝑦), 𝐴)
6 omex 9587 . . . 4 ω ∈ V
7 resfunexg 7169 . . . 4 ((Fun rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ∧ ω ∈ V) → (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω) ∈ V)
85, 6, 7mp2an 691 . . 3 (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω) ∈ V
93, 4, 8fvmpt 6952 . 2 (𝐴 ∈ V → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
101, 9syl 17 1 (𝐴𝑉 → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3447   cuni 4869  cmpt 5192  cres 5639  Fun wfun 6494  cfv 6500  ωcom 7806  reccrdg 8359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676  ax-inf2 9585
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360
This theorem is referenced by:  itunifn  10361  ituni0  10362  itunisuc  10363
  Copyright terms: Public domain W3C validator