Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hsmex | Structured version Visualization version GIF version |
Description: The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 9208. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
hsmex | ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5057 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑥 ≼ 𝑎 ↔ 𝑥 ≼ 𝑋)) | |
2 | 1 | ralbidv 3118 | . . . 4 ⊢ (𝑎 = 𝑋 → (∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎 ↔ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋)) |
3 | 2 | rabbidv 3390 | . . 3 ⊢ (𝑎 = 𝑋 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} = {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋}) |
4 | 3 | eleq1d 2822 | . 2 ⊢ (𝑎 = 𝑋 → ({𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} ∈ V ↔ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V)) |
5 | vex 3412 | . . 3 ⊢ 𝑎 ∈ V | |
6 | eqid 2737 | . . 3 ⊢ (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω) = (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω) | |
7 | rdgeq2 8148 | . . . . . 6 ⊢ (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) = rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑏)) | |
8 | unieq 4830 | . . . . . . . 8 ⊢ (𝑓 = 𝑐 → ∪ 𝑓 = ∪ 𝑐) | |
9 | 8 | cbvmptv 5158 | . . . . . . 7 ⊢ (𝑓 ∈ V ↦ ∪ 𝑓) = (𝑐 ∈ V ↦ ∪ 𝑐) |
10 | rdgeq1 8147 | . . . . . . 7 ⊢ ((𝑓 ∈ V ↦ ∪ 𝑓) = (𝑐 ∈ V ↦ ∪ 𝑐) → rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏)) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏) |
12 | 7, 11 | eqtrdi 2794 | . . . . 5 ⊢ (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) = rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏)) |
13 | 12 | reseq1d 5850 | . . . 4 ⊢ (𝑒 = 𝑏 → (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω) = (rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏) ↾ ω)) |
14 | 13 | cbvmptv 5158 | . . 3 ⊢ (𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω)) = (𝑏 ∈ V ↦ (rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏) ↾ ω)) |
15 | eqid 2737 | . . 3 ⊢ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} = {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} | |
16 | eqid 2737 | . . 3 ⊢ OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦))) = OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦))) | |
17 | 5, 6, 14, 15, 16 | hsmexlem6 10045 | . 2 ⊢ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} ∈ V |
18 | 4, 17 | vtoclg 3481 | 1 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 Vcvv 3408 𝒫 cpw 4513 {csn 4541 ∪ cuni 4819 class class class wbr 5053 ↦ cmpt 5135 E cep 5459 × cxp 5549 ↾ cres 5553 “ cima 5554 Oncon0 6213 ‘cfv 6380 ωcom 7644 reccrdg 8145 ≼ cdom 8624 OrdIsocoi 9125 harchar 9172 TCctc 9352 𝑅1cr1 9378 rankcrnk 9379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-smo 8083 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-oi 9126 df-har 9173 df-wdom 9181 df-tc 9353 df-r1 9380 df-rank 9381 |
This theorem is referenced by: hsmex2 10047 |
Copyright terms: Public domain | W3C validator |