![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hsmex | Structured version Visualization version GIF version |
Description: The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 9591. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
hsmex | β’ (π β π β {π β βͺ (π 1 β On) β£ βπ₯ β (TCβ{π })π₯ βΌ π} β V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5153 | . . . . 5 β’ (π = π β (π₯ βΌ π β π₯ βΌ π)) | |
2 | 1 | ralbidv 3175 | . . . 4 β’ (π = π β (βπ₯ β (TCβ{π })π₯ βΌ π β βπ₯ β (TCβ{π })π₯ βΌ π)) |
3 | 2 | rabbidv 3438 | . . 3 β’ (π = π β {π β βͺ (π 1 β On) β£ βπ₯ β (TCβ{π })π₯ βΌ π} = {π β βͺ (π 1 β On) β£ βπ₯ β (TCβ{π })π₯ βΌ π}) |
4 | 3 | eleq1d 2816 | . 2 β’ (π = π β ({π β βͺ (π 1 β On) β£ βπ₯ β (TCβ{π })π₯ βΌ π} β V β {π β βͺ (π 1 β On) β£ βπ₯ β (TCβ{π })π₯ βΌ π} β V)) |
5 | vex 3476 | . . 3 β’ π β V | |
6 | eqid 2730 | . . 3 β’ (rec((π β V β¦ (harβπ« (π Γ π))), (harβπ« π)) βΎ Ο) = (rec((π β V β¦ (harβπ« (π Γ π))), (harβπ« π)) βΎ Ο) | |
7 | rdgeq2 8416 | . . . . . 6 β’ (π = π β rec((π β V β¦ βͺ π), π) = rec((π β V β¦ βͺ π), π)) | |
8 | unieq 4920 | . . . . . . . 8 β’ (π = π β βͺ π = βͺ π) | |
9 | 8 | cbvmptv 5262 | . . . . . . 7 β’ (π β V β¦ βͺ π) = (π β V β¦ βͺ π) |
10 | rdgeq1 8415 | . . . . . . 7 β’ ((π β V β¦ βͺ π) = (π β V β¦ βͺ π) β rec((π β V β¦ βͺ π), π) = rec((π β V β¦ βͺ π), π)) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 β’ rec((π β V β¦ βͺ π), π) = rec((π β V β¦ βͺ π), π) |
12 | 7, 11 | eqtrdi 2786 | . . . . 5 β’ (π = π β rec((π β V β¦ βͺ π), π) = rec((π β V β¦ βͺ π), π)) |
13 | 12 | reseq1d 5981 | . . . 4 β’ (π = π β (rec((π β V β¦ βͺ π), π) βΎ Ο) = (rec((π β V β¦ βͺ π), π) βΎ Ο)) |
14 | 13 | cbvmptv 5262 | . . 3 β’ (π β V β¦ (rec((π β V β¦ βͺ π), π) βΎ Ο)) = (π β V β¦ (rec((π β V β¦ βͺ π), π) βΎ Ο)) |
15 | eqid 2730 | . . 3 β’ {π β βͺ (π 1 β On) β£ βπ₯ β (TCβ{π })π₯ βΌ π} = {π β βͺ (π 1 β On) β£ βπ₯ β (TCβ{π })π₯ βΌ π} | |
16 | eqid 2730 | . . 3 β’ OrdIso( E , (rank β (((π β V β¦ (rec((π β V β¦ βͺ π), π) βΎ Ο))βπ§)βπ¦))) = OrdIso( E , (rank β (((π β V β¦ (rec((π β V β¦ βͺ π), π) βΎ Ο))βπ§)βπ¦))) | |
17 | 5, 6, 14, 15, 16 | hsmexlem6 10430 | . 2 β’ {π β βͺ (π 1 β On) β£ βπ₯ β (TCβ{π })π₯ βΌ π} β V |
18 | 4, 17 | vtoclg 3541 | 1 β’ (π β π β {π β βͺ (π 1 β On) β£ βπ₯ β (TCβ{π })π₯ βΌ π} β V) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 βwral 3059 {crab 3430 Vcvv 3472 π« cpw 4603 {csn 4629 βͺ cuni 4909 class class class wbr 5149 β¦ cmpt 5232 E cep 5580 Γ cxp 5675 βΎ cres 5679 β cima 5680 Oncon0 6365 βcfv 6544 Οcom 7859 reccrdg 8413 βΌ cdom 8941 OrdIsocoi 9508 harchar 9555 TCctc 9735 π 1cr1 9761 rankcrnk 9762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-inf2 9640 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-smo 8350 df-recs 8375 df-rdg 8414 df-en 8944 df-dom 8945 df-sdom 8946 df-oi 9509 df-har 9556 df-wdom 9564 df-tc 9736 df-r1 9763 df-rank 9764 |
This theorem is referenced by: hsmex2 10432 |
Copyright terms: Public domain | W3C validator |