| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hsmex | Structured version Visualization version GIF version | ||
| Description: The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 9521. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| hsmex | ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5106 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑥 ≼ 𝑎 ↔ 𝑥 ≼ 𝑋)) | |
| 2 | 1 | ralbidv 3156 | . . . 4 ⊢ (𝑎 = 𝑋 → (∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎 ↔ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋)) |
| 3 | 2 | rabbidv 3410 | . . 3 ⊢ (𝑎 = 𝑋 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} = {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋}) |
| 4 | 3 | eleq1d 2813 | . 2 ⊢ (𝑎 = 𝑋 → ({𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} ∈ V ↔ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V)) |
| 5 | vex 3448 | . . 3 ⊢ 𝑎 ∈ V | |
| 6 | eqid 2729 | . . 3 ⊢ (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω) = (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω) | |
| 7 | rdgeq2 8357 | . . . . . 6 ⊢ (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) = rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑏)) | |
| 8 | unieq 4878 | . . . . . . . 8 ⊢ (𝑓 = 𝑐 → ∪ 𝑓 = ∪ 𝑐) | |
| 9 | 8 | cbvmptv 5206 | . . . . . . 7 ⊢ (𝑓 ∈ V ↦ ∪ 𝑓) = (𝑐 ∈ V ↦ ∪ 𝑐) |
| 10 | rdgeq1 8356 | . . . . . . 7 ⊢ ((𝑓 ∈ V ↦ ∪ 𝑓) = (𝑐 ∈ V ↦ ∪ 𝑐) → rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏)) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏) |
| 12 | 7, 11 | eqtrdi 2780 | . . . . 5 ⊢ (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) = rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏)) |
| 13 | 12 | reseq1d 5938 | . . . 4 ⊢ (𝑒 = 𝑏 → (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω) = (rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏) ↾ ω)) |
| 14 | 13 | cbvmptv 5206 | . . 3 ⊢ (𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω)) = (𝑏 ∈ V ↦ (rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏) ↾ ω)) |
| 15 | eqid 2729 | . . 3 ⊢ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} = {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} | |
| 16 | eqid 2729 | . . 3 ⊢ OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦))) = OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦))) | |
| 17 | 5, 6, 14, 15, 16 | hsmexlem6 10360 | . 2 ⊢ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} ∈ V |
| 18 | 4, 17 | vtoclg 3517 | 1 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 Vcvv 3444 𝒫 cpw 4559 {csn 4585 ∪ cuni 4867 class class class wbr 5102 ↦ cmpt 5183 E cep 5530 × cxp 5629 ↾ cres 5633 “ cima 5634 Oncon0 6320 ‘cfv 6499 ωcom 7822 reccrdg 8354 ≼ cdom 8893 OrdIsocoi 9438 harchar 9485 TCctc 9665 𝑅1cr1 9691 rankcrnk 9692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-smo 8292 df-recs 8317 df-rdg 8355 df-en 8896 df-dom 8897 df-sdom 8898 df-oi 9439 df-har 9486 df-wdom 9494 df-tc 9666 df-r1 9693 df-rank 9694 |
| This theorem is referenced by: hsmex2 10362 |
| Copyright terms: Public domain | W3C validator |