MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmex Structured version   Visualization version   GIF version

Theorem hsmex 10392
Description: The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 9552. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Assertion
Ref Expression
hsmex (𝑋𝑉 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Distinct variable group:   𝑥,𝑠,𝑋
Allowed substitution hints:   𝑉(𝑥,𝑠)

Proof of Theorem hsmex
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5114 . . . . 5 (𝑎 = 𝑋 → (𝑥𝑎𝑥𝑋))
21ralbidv 3157 . . . 4 (𝑎 = 𝑋 → (∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎 ↔ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋))
32rabbidv 3416 . . 3 (𝑎 = 𝑋 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} = {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋})
43eleq1d 2814 . 2 (𝑎 = 𝑋 → ({𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} ∈ V ↔ {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V))
5 vex 3454 . . 3 𝑎 ∈ V
6 eqid 2730 . . 3 (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω) = (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω)
7 rdgeq2 8383 . . . . . 6 (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ 𝑓), 𝑒) = rec((𝑓 ∈ V ↦ 𝑓), 𝑏))
8 unieq 4885 . . . . . . . 8 (𝑓 = 𝑐 𝑓 = 𝑐)
98cbvmptv 5214 . . . . . . 7 (𝑓 ∈ V ↦ 𝑓) = (𝑐 ∈ V ↦ 𝑐)
10 rdgeq1 8382 . . . . . . 7 ((𝑓 ∈ V ↦ 𝑓) = (𝑐 ∈ V ↦ 𝑐) → rec((𝑓 ∈ V ↦ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ 𝑐), 𝑏))
119, 10ax-mp 5 . . . . . 6 rec((𝑓 ∈ V ↦ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ 𝑐), 𝑏)
127, 11eqtrdi 2781 . . . . 5 (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ 𝑓), 𝑒) = rec((𝑐 ∈ V ↦ 𝑐), 𝑏))
1312reseq1d 5952 . . . 4 (𝑒 = 𝑏 → (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω) = (rec((𝑐 ∈ V ↦ 𝑐), 𝑏) ↾ ω))
1413cbvmptv 5214 . . 3 (𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω)) = (𝑏 ∈ V ↦ (rec((𝑐 ∈ V ↦ 𝑐), 𝑏) ↾ ω))
15 eqid 2730 . . 3 {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} = {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎}
16 eqid 2730 . . 3 OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦))) = OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦)))
175, 6, 14, 15, 16hsmexlem6 10391 . 2 {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} ∈ V
184, 17vtoclg 3523 1 (𝑋𝑉 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  𝒫 cpw 4566  {csn 4592   cuni 4874   class class class wbr 5110  cmpt 5191   E cep 5540   × cxp 5639  cres 5643  cima 5644  Oncon0 6335  cfv 6514  ωcom 7845  reccrdg 8380  cdom 8919  OrdIsocoi 9469  harchar 9516  TCctc 9696  𝑅1cr1 9722  rankcrnk 9723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-smo 8318  df-recs 8343  df-rdg 8381  df-en 8922  df-dom 8923  df-sdom 8924  df-oi 9470  df-har 9517  df-wdom 9525  df-tc 9697  df-r1 9724  df-rank 9725
This theorem is referenced by:  hsmex2  10393
  Copyright terms: Public domain W3C validator