![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hsmex | Structured version Visualization version GIF version |
Description: The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 9661. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
hsmex | ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑥 ≼ 𝑎 ↔ 𝑥 ≼ 𝑋)) | |
2 | 1 | ralbidv 3184 | . . . 4 ⊢ (𝑎 = 𝑋 → (∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎 ↔ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋)) |
3 | 2 | rabbidv 3451 | . . 3 ⊢ (𝑎 = 𝑋 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} = {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋}) |
4 | 3 | eleq1d 2829 | . 2 ⊢ (𝑎 = 𝑋 → ({𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} ∈ V ↔ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V)) |
5 | vex 3492 | . . 3 ⊢ 𝑎 ∈ V | |
6 | eqid 2740 | . . 3 ⊢ (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω) = (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω) | |
7 | rdgeq2 8468 | . . . . . 6 ⊢ (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) = rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑏)) | |
8 | unieq 4942 | . . . . . . . 8 ⊢ (𝑓 = 𝑐 → ∪ 𝑓 = ∪ 𝑐) | |
9 | 8 | cbvmptv 5279 | . . . . . . 7 ⊢ (𝑓 ∈ V ↦ ∪ 𝑓) = (𝑐 ∈ V ↦ ∪ 𝑐) |
10 | rdgeq1 8467 | . . . . . . 7 ⊢ ((𝑓 ∈ V ↦ ∪ 𝑓) = (𝑐 ∈ V ↦ ∪ 𝑐) → rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏)) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏) |
12 | 7, 11 | eqtrdi 2796 | . . . . 5 ⊢ (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) = rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏)) |
13 | 12 | reseq1d 6008 | . . . 4 ⊢ (𝑒 = 𝑏 → (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω) = (rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏) ↾ ω)) |
14 | 13 | cbvmptv 5279 | . . 3 ⊢ (𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω)) = (𝑏 ∈ V ↦ (rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏) ↾ ω)) |
15 | eqid 2740 | . . 3 ⊢ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} = {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} | |
16 | eqid 2740 | . . 3 ⊢ OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦))) = OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦))) | |
17 | 5, 6, 14, 15, 16 | hsmexlem6 10500 | . 2 ⊢ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} ∈ V |
18 | 4, 17 | vtoclg 3566 | 1 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 E cep 5598 × cxp 5698 ↾ cres 5702 “ cima 5703 Oncon0 6395 ‘cfv 6573 ωcom 7903 reccrdg 8465 ≼ cdom 9001 OrdIsocoi 9578 harchar 9625 TCctc 9805 𝑅1cr1 9831 rankcrnk 9832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-smo 8402 df-recs 8427 df-rdg 8466 df-en 9004 df-dom 9005 df-sdom 9006 df-oi 9579 df-har 9626 df-wdom 9634 df-tc 9806 df-r1 9833 df-rank 9834 |
This theorem is referenced by: hsmex2 10502 |
Copyright terms: Public domain | W3C validator |