MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmex Structured version   Visualization version   GIF version

Theorem hsmex 10238
Description: The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 9399. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Assertion
Ref Expression
hsmex (𝑋𝑉 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Distinct variable group:   𝑥,𝑠,𝑋
Allowed substitution hints:   𝑉(𝑥,𝑠)

Proof of Theorem hsmex
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5085 . . . . 5 (𝑎 = 𝑋 → (𝑥𝑎𝑥𝑋))
21ralbidv 3170 . . . 4 (𝑎 = 𝑋 → (∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎 ↔ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋))
32rabbidv 3421 . . 3 (𝑎 = 𝑋 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} = {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋})
43eleq1d 2821 . 2 (𝑎 = 𝑋 → ({𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} ∈ V ↔ {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V))
5 vex 3441 . . 3 𝑎 ∈ V
6 eqid 2736 . . 3 (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω) = (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω)
7 rdgeq2 8274 . . . . . 6 (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ 𝑓), 𝑒) = rec((𝑓 ∈ V ↦ 𝑓), 𝑏))
8 unieq 4855 . . . . . . . 8 (𝑓 = 𝑐 𝑓 = 𝑐)
98cbvmptv 5194 . . . . . . 7 (𝑓 ∈ V ↦ 𝑓) = (𝑐 ∈ V ↦ 𝑐)
10 rdgeq1 8273 . . . . . . 7 ((𝑓 ∈ V ↦ 𝑓) = (𝑐 ∈ V ↦ 𝑐) → rec((𝑓 ∈ V ↦ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ 𝑐), 𝑏))
119, 10ax-mp 5 . . . . . 6 rec((𝑓 ∈ V ↦ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ 𝑐), 𝑏)
127, 11eqtrdi 2792 . . . . 5 (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ 𝑓), 𝑒) = rec((𝑐 ∈ V ↦ 𝑐), 𝑏))
1312reseq1d 5902 . . . 4 (𝑒 = 𝑏 → (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω) = (rec((𝑐 ∈ V ↦ 𝑐), 𝑏) ↾ ω))
1413cbvmptv 5194 . . 3 (𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω)) = (𝑏 ∈ V ↦ (rec((𝑐 ∈ V ↦ 𝑐), 𝑏) ↾ ω))
15 eqid 2736 . . 3 {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} = {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎}
16 eqid 2736 . . 3 OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦))) = OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦)))
175, 6, 14, 15, 16hsmexlem6 10237 . 2 {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} ∈ V
184, 17vtoclg 3510 1 (𝑋𝑉 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wral 3061  {crab 3330  Vcvv 3437  𝒫 cpw 4539  {csn 4565   cuni 4844   class class class wbr 5081  cmpt 5164   E cep 5505   × cxp 5598  cres 5602  cima 5603  Oncon0 6281  cfv 6458  ωcom 7744  reccrdg 8271  cdom 8762  OrdIsocoi 9316  harchar 9363  TCctc 9542  𝑅1cr1 9568  rankcrnk 9569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9447
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3331  df-reu 3332  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-smo 8208  df-recs 8233  df-rdg 8272  df-en 8765  df-dom 8766  df-sdom 8767  df-oi 9317  df-har 9364  df-wdom 9372  df-tc 9543  df-r1 9570  df-rank 9571
This theorem is referenced by:  hsmex2  10239
  Copyright terms: Public domain W3C validator