| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hsmex | Structured version Visualization version GIF version | ||
| Description: The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 9545. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| hsmex | ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5111 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑥 ≼ 𝑎 ↔ 𝑥 ≼ 𝑋)) | |
| 2 | 1 | ralbidv 3156 | . . . 4 ⊢ (𝑎 = 𝑋 → (∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎 ↔ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋)) |
| 3 | 2 | rabbidv 3413 | . . 3 ⊢ (𝑎 = 𝑋 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} = {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋}) |
| 4 | 3 | eleq1d 2813 | . 2 ⊢ (𝑎 = 𝑋 → ({𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} ∈ V ↔ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V)) |
| 5 | vex 3451 | . . 3 ⊢ 𝑎 ∈ V | |
| 6 | eqid 2729 | . . 3 ⊢ (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω) = (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω) | |
| 7 | rdgeq2 8380 | . . . . . 6 ⊢ (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) = rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑏)) | |
| 8 | unieq 4882 | . . . . . . . 8 ⊢ (𝑓 = 𝑐 → ∪ 𝑓 = ∪ 𝑐) | |
| 9 | 8 | cbvmptv 5211 | . . . . . . 7 ⊢ (𝑓 ∈ V ↦ ∪ 𝑓) = (𝑐 ∈ V ↦ ∪ 𝑐) |
| 10 | rdgeq1 8379 | . . . . . . 7 ⊢ ((𝑓 ∈ V ↦ ∪ 𝑓) = (𝑐 ∈ V ↦ ∪ 𝑐) → rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏)) | |
| 11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏) |
| 12 | 7, 11 | eqtrdi 2780 | . . . . 5 ⊢ (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) = rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏)) |
| 13 | 12 | reseq1d 5949 | . . . 4 ⊢ (𝑒 = 𝑏 → (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω) = (rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏) ↾ ω)) |
| 14 | 13 | cbvmptv 5211 | . . 3 ⊢ (𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω)) = (𝑏 ∈ V ↦ (rec((𝑐 ∈ V ↦ ∪ 𝑐), 𝑏) ↾ ω)) |
| 15 | eqid 2729 | . . 3 ⊢ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} = {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} | |
| 16 | eqid 2729 | . . 3 ⊢ OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦))) = OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ ∪ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦))) | |
| 17 | 5, 6, 14, 15, 16 | hsmexlem6 10384 | . 2 ⊢ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑎} ∈ V |
| 18 | 4, 17 | vtoclg 3520 | 1 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 𝒫 cpw 4563 {csn 4589 ∪ cuni 4871 class class class wbr 5107 ↦ cmpt 5188 E cep 5537 × cxp 5636 ↾ cres 5640 “ cima 5641 Oncon0 6332 ‘cfv 6511 ωcom 7842 reccrdg 8377 ≼ cdom 8916 OrdIsocoi 9462 harchar 9509 TCctc 9689 𝑅1cr1 9715 rankcrnk 9716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-smo 8315 df-recs 8340 df-rdg 8378 df-en 8919 df-dom 8920 df-sdom 8921 df-oi 9463 df-har 9510 df-wdom 9518 df-tc 9690 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: hsmex2 10386 |
| Copyright terms: Public domain | W3C validator |