MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmex Structured version   Visualization version   GIF version

Theorem hsmex 10323
Description: The collection of hereditarily size-limited well-founded sets comprise a set. The proof is that of Randall Holmes at http://math.boisestate.edu/~holmes/holmes/hereditary.pdf, with modifications to use Hartogs' theorem instead of the weak variant (inconsequentially weakening some intermediate results), and making the well-foundedness condition explicit to avoid a direct dependence on ax-reg 9478. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Assertion
Ref Expression
hsmex (𝑋𝑉 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Distinct variable group:   𝑥,𝑠,𝑋
Allowed substitution hints:   𝑉(𝑥,𝑠)

Proof of Theorem hsmex
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5093 . . . . 5 (𝑎 = 𝑋 → (𝑥𝑎𝑥𝑋))
21ralbidv 3155 . . . 4 (𝑎 = 𝑋 → (∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎 ↔ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋))
32rabbidv 3402 . . 3 (𝑎 = 𝑋 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} = {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋})
43eleq1d 2816 . 2 (𝑎 = 𝑋 → ({𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} ∈ V ↔ {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V))
5 vex 3440 . . 3 𝑎 ∈ V
6 eqid 2731 . . 3 (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω) = (rec((𝑑 ∈ V ↦ (har‘𝒫 (𝑎 × 𝑑))), (har‘𝒫 𝑎)) ↾ ω)
7 rdgeq2 8331 . . . . . 6 (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ 𝑓), 𝑒) = rec((𝑓 ∈ V ↦ 𝑓), 𝑏))
8 unieq 4867 . . . . . . . 8 (𝑓 = 𝑐 𝑓 = 𝑐)
98cbvmptv 5193 . . . . . . 7 (𝑓 ∈ V ↦ 𝑓) = (𝑐 ∈ V ↦ 𝑐)
10 rdgeq1 8330 . . . . . . 7 ((𝑓 ∈ V ↦ 𝑓) = (𝑐 ∈ V ↦ 𝑐) → rec((𝑓 ∈ V ↦ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ 𝑐), 𝑏))
119, 10ax-mp 5 . . . . . 6 rec((𝑓 ∈ V ↦ 𝑓), 𝑏) = rec((𝑐 ∈ V ↦ 𝑐), 𝑏)
127, 11eqtrdi 2782 . . . . 5 (𝑒 = 𝑏 → rec((𝑓 ∈ V ↦ 𝑓), 𝑒) = rec((𝑐 ∈ V ↦ 𝑐), 𝑏))
1312reseq1d 5926 . . . 4 (𝑒 = 𝑏 → (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω) = (rec((𝑐 ∈ V ↦ 𝑐), 𝑏) ↾ ω))
1413cbvmptv 5193 . . 3 (𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω)) = (𝑏 ∈ V ↦ (rec((𝑐 ∈ V ↦ 𝑐), 𝑏) ↾ ω))
15 eqid 2731 . . 3 {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} = {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎}
16 eqid 2731 . . 3 OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦))) = OrdIso( E , (rank “ (((𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ 𝑓), 𝑒) ↾ ω))‘𝑧)‘𝑦)))
175, 6, 14, 15, 16hsmexlem6 10322 . 2 {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑎} ∈ V
184, 17vtoclg 3507 1 (𝑋𝑉 → {𝑠 (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥𝑋} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  𝒫 cpw 4547  {csn 4573   cuni 4856   class class class wbr 5089  cmpt 5170   E cep 5513   × cxp 5612  cres 5616  cima 5617  Oncon0 6306  cfv 6481  ωcom 7796  reccrdg 8328  cdom 8867  OrdIsocoi 9395  harchar 9442  TCctc 9624  𝑅1cr1 9655  rankcrnk 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-smo 8266  df-recs 8291  df-rdg 8329  df-en 8870  df-dom 8871  df-sdom 8872  df-oi 9396  df-har 9443  df-wdom 9451  df-tc 9625  df-r1 9657  df-rank 9658
This theorem is referenced by:  hsmex2  10324
  Copyright terms: Public domain W3C validator