![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmmhp | Structured version Visualization version GIF version |
Description: The domain of the homogeneous polynomial operator is a relation. (Contributed by SN, 18-May-2025.) |
Ref | Expression |
---|---|
reldmmhp | ⊢ Rel dom mHomP |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mhp 22163 | . 2 ⊢ mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) | |
2 | 1 | reldmmpo 7584 | 1 ⊢ Rel dom mHomP |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ⊆ wss 3976 ↦ cmpt 5249 ◡ccnv 5699 dom cdm 5700 “ cima 5703 Rel wrel 5705 ‘cfv 6573 (class class class)co 7448 supp csupp 8201 ↑m cmap 8884 Fincfn 9003 ℕcn 12293 ℕ0cn0 12553 Basecbs 17258 ↾s cress 17287 0gc0g 17499 Σg cgsu 17500 ℂfldccnfld 21387 mPoly cmpl 21949 mHomP cmhp 22156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-dm 5710 df-oprab 7452 df-mpo 7453 df-mhp 22163 |
This theorem is referenced by: mhprcl 22170 mhpmpl 22171 mhpdeg 22172 mhpmulcl 22176 mhppwdeg 22177 mhpaddcl 22178 mhpinvcl 22179 mhpvscacl 22181 mhpind 42549 evlsmhpvvval 42550 mhphf2 42553 mhphf3 42554 |
Copyright terms: Public domain | W3C validator |