MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmhp Structured version   Visualization version   GIF version

Theorem reldmmhp 22062
Description: The domain of the homogeneous polynomial operator is a relation. (Contributed by SN, 18-May-2025.)
Assertion
Ref Expression
reldmmhp Rel dom mHomP

Proof of Theorem reldmmhp
Dummy variables 𝑓 𝑔 𝑖 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhp 22061 . 2 mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
21reldmmpo 7489 1 Rel dom mHomP
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  {crab 3397  Vcvv 3438  wss 3899  cmpt 5176  ccnv 5620  dom cdm 5621  cima 5624  Rel wrel 5626  cfv 6489  (class class class)co 7355   supp csupp 8099  m cmap 8759  Fincfn 8878  cn 12135  0cn0 12391  Basecbs 17130  s cress 17151  0gc0g 17353   Σg cgsu 17354  fldccnfld 21301   mPoly cmpl 21853   mHomP cmhp 22054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-dm 5631  df-oprab 7359  df-mpo 7360  df-mhp 22061
This theorem is referenced by:  ismhp  22065  mhprcl  22068  mhpmulcl  22074  mhppwdeg  22075  mhpaddcl  22076  mhpinvcl  22077  mhpvscacl  22079  mhpind  42702  evlsmhpvvval  42703  mhphf2  42706  mhphf3  42707
  Copyright terms: Public domain W3C validator