| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmhp | Structured version Visualization version GIF version | ||
| Description: The domain of the homogeneous polynomial operator is a relation. (Contributed by SN, 18-May-2025.) |
| Ref | Expression |
|---|---|
| reldmmhp | ⊢ Rel dom mHomP |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mhp 22089 | . 2 ⊢ mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) | |
| 2 | 1 | reldmmpo 7549 | 1 ⊢ Rel dom mHomP |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 ⊆ wss 3931 ↦ cmpt 5205 ◡ccnv 5664 dom cdm 5665 “ cima 5668 Rel wrel 5670 ‘cfv 6541 (class class class)co 7413 supp csupp 8167 ↑m cmap 8848 Fincfn 8967 ℕcn 12248 ℕ0cn0 12509 Basecbs 17230 ↾s cress 17253 0gc0g 17456 Σg cgsu 17457 ℂfldccnfld 21327 mPoly cmpl 21881 mHomP cmhp 22082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-dm 5675 df-oprab 7417 df-mpo 7418 df-mhp 22089 |
| This theorem is referenced by: ismhp 22093 mhprcl 22096 mhpmulcl 22102 mhppwdeg 22103 mhpaddcl 22104 mhpinvcl 22105 mhpvscacl 22107 mhpind 42583 evlsmhpvvval 42584 mhphf2 42587 mhphf3 42588 |
| Copyright terms: Public domain | W3C validator |