| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmhp | Structured version Visualization version GIF version | ||
| Description: The domain of the homogeneous polynomial operator is a relation. (Contributed by SN, 18-May-2025.) |
| Ref | Expression |
|---|---|
| reldmmhp | ⊢ Rel dom mHomP |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mhp 22061 | . 2 ⊢ mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) | |
| 2 | 1 | reldmmpo 7489 | 1 ⊢ Rel dom mHomP |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 {crab 3397 Vcvv 3438 ⊆ wss 3899 ↦ cmpt 5176 ◡ccnv 5620 dom cdm 5621 “ cima 5624 Rel wrel 5626 ‘cfv 6489 (class class class)co 7355 supp csupp 8099 ↑m cmap 8759 Fincfn 8878 ℕcn 12135 ℕ0cn0 12391 Basecbs 17130 ↾s cress 17151 0gc0g 17353 Σg cgsu 17354 ℂfldccnfld 21301 mPoly cmpl 21853 mHomP cmhp 22054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-dm 5631 df-oprab 7359 df-mpo 7360 df-mhp 22061 |
| This theorem is referenced by: ismhp 22065 mhprcl 22068 mhpmulcl 22074 mhppwdeg 22075 mhpaddcl 22076 mhpinvcl 22077 mhpvscacl 22079 mhpind 42702 evlsmhpvvval 42703 mhphf2 42706 mhphf3 42707 |
| Copyright terms: Public domain | W3C validator |