MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmhp Structured version   Visualization version   GIF version

Theorem reldmmhp 22164
Description: The domain of the homogeneous polynomial operator is a relation. (Contributed by SN, 18-May-2025.)
Assertion
Ref Expression
reldmmhp Rel dom mHomP

Proof of Theorem reldmmhp
Dummy variables 𝑓 𝑔 𝑖 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhp 22163 . 2 mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
21reldmmpo 7584 1 Rel dom mHomP
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  wss 3976  cmpt 5249  ccnv 5699  dom cdm 5700  cima 5703  Rel wrel 5705  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884  Fincfn 9003  cn 12293  0cn0 12553  Basecbs 17258  s cress 17287  0gc0g 17499   Σg cgsu 17500  fldccnfld 21387   mPoly cmpl 21949   mHomP cmhp 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-oprab 7452  df-mpo 7453  df-mhp 22163
This theorem is referenced by:  mhprcl  22170  mhpmpl  22171  mhpdeg  22172  mhpmulcl  22176  mhppwdeg  22177  mhpaddcl  22178  mhpinvcl  22179  mhpvscacl  22181  mhpind  42549  evlsmhpvvval  42550  mhphf2  42553  mhphf3  42554
  Copyright terms: Public domain W3C validator