MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmhp Structured version   Visualization version   GIF version

Theorem reldmmhp 22031
Description: The domain of the homogeneous polynomial operator is a relation. (Contributed by SN, 18-May-2025.)
Assertion
Ref Expression
reldmmhp Rel dom mHomP

Proof of Theorem reldmmhp
Dummy variables 𝑓 𝑔 𝑖 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhp 22030 . 2 mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
21reldmmpo 7526 1 Rel dom mHomP
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  wss 3917  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644  Rel wrel 5646  cfv 6514  (class class class)co 7390   supp csupp 8142  m cmap 8802  Fincfn 8921  cn 12193  0cn0 12449  Basecbs 17186  s cress 17207  0gc0g 17409   Σg cgsu 17410  fldccnfld 21271   mPoly cmpl 21822   mHomP cmhp 22023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-dm 5651  df-oprab 7394  df-mpo 7395  df-mhp 22030
This theorem is referenced by:  ismhp  22034  mhprcl  22037  mhpmulcl  22043  mhppwdeg  22044  mhpaddcl  22045  mhpinvcl  22046  mhpvscacl  22048  mhpind  42589  evlsmhpvvval  42590  mhphf2  42593  mhphf3  42594
  Copyright terms: Public domain W3C validator