![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldmmhp | Structured version Visualization version GIF version |
Description: The domain of the homogeneous polynomial operator is a relation. (Contributed by SN, 18-May-2025.) |
Ref | Expression |
---|---|
reldmmhp | ⊢ Rel dom mHomP |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mhp 22158 | . 2 ⊢ mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) | |
2 | 1 | reldmmpo 7567 | 1 ⊢ Rel dom mHomP |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 ⊆ wss 3963 ↦ cmpt 5231 ◡ccnv 5688 dom cdm 5689 “ cima 5692 Rel wrel 5694 ‘cfv 6563 (class class class)co 7431 supp csupp 8184 ↑m cmap 8865 Fincfn 8984 ℕcn 12264 ℕ0cn0 12524 Basecbs 17245 ↾s cress 17274 0gc0g 17486 Σg cgsu 17487 ℂfldccnfld 21382 mPoly cmpl 21944 mHomP cmhp 22151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-dm 5699 df-oprab 7435 df-mpo 7436 df-mhp 22158 |
This theorem is referenced by: ismhp 22162 mhprcl 22165 mhpmulcl 22171 mhppwdeg 22172 mhpaddcl 22173 mhpinvcl 22174 mhpvscacl 22176 mhpind 42581 evlsmhpvvval 42582 mhphf2 42585 mhphf3 42586 |
Copyright terms: Public domain | W3C validator |