| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmhp | Structured version Visualization version GIF version | ||
| Description: The domain of the homogeneous polynomial operator is a relation. (Contributed by SN, 18-May-2025.) |
| Ref | Expression |
|---|---|
| reldmmhp | ⊢ Rel dom mHomP |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mhp 22044 | . 2 ⊢ mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) | |
| 2 | 1 | reldmmpo 7475 | 1 ⊢ Rel dom mHomP |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 {crab 3393 Vcvv 3434 ⊆ wss 3900 ↦ cmpt 5170 ◡ccnv 5613 dom cdm 5614 “ cima 5617 Rel wrel 5619 ‘cfv 6477 (class class class)co 7341 supp csupp 8085 ↑m cmap 8745 Fincfn 8864 ℕcn 12117 ℕ0cn0 12373 Basecbs 17112 ↾s cress 17133 0gc0g 17335 Σg cgsu 17336 ℂfldccnfld 21284 mPoly cmpl 21836 mHomP cmhp 22037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-oprab 7345 df-mpo 7346 df-mhp 22044 |
| This theorem is referenced by: ismhp 22048 mhprcl 22051 mhpmulcl 22057 mhppwdeg 22058 mhpaddcl 22059 mhpinvcl 22060 mhpvscacl 22062 mhpind 42606 evlsmhpvvval 42607 mhphf2 42610 mhphf3 42611 |
| Copyright terms: Public domain | W3C validator |