MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmhp Structured version   Visualization version   GIF version

Theorem reldmmhp 22080
Description: The domain of the homogeneous polynomial operator is a relation. (Contributed by SN, 18-May-2025.)
Assertion
Ref Expression
reldmmhp Rel dom mHomP

Proof of Theorem reldmmhp
Dummy variables 𝑓 𝑔 𝑖 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mhp 22079 . 2 mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
21reldmmpo 7546 1 Rel dom mHomP
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  wss 3931  cmpt 5206  ccnv 5658  dom cdm 5659  cima 5662  Rel wrel 5664  cfv 6536  (class class class)co 7410   supp csupp 8164  m cmap 8845  Fincfn 8964  cn 12245  0cn0 12506  Basecbs 17233  s cress 17256  0gc0g 17458   Σg cgsu 17459  fldccnfld 21320   mPoly cmpl 21871   mHomP cmhp 22072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-dm 5669  df-oprab 7414  df-mpo 7415  df-mhp 22079
This theorem is referenced by:  ismhp  22083  mhprcl  22086  mhpmulcl  22092  mhppwdeg  22093  mhpaddcl  22094  mhpinvcl  22095  mhpvscacl  22097  mhpind  42584  evlsmhpvvval  42585  mhphf2  42588  mhphf3  42589
  Copyright terms: Public domain W3C validator