| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldmmhp | Structured version Visualization version GIF version | ||
| Description: The domain of the homogeneous polynomial operator is a relation. (Contributed by SN, 18-May-2025.) |
| Ref | Expression |
|---|---|
| reldmmhp | ⊢ Rel dom mHomP |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mhp 22079 | . 2 ⊢ mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑛}})) | |
| 2 | 1 | reldmmpo 7546 | 1 ⊢ Rel dom mHomP |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 ⊆ wss 3931 ↦ cmpt 5206 ◡ccnv 5658 dom cdm 5659 “ cima 5662 Rel wrel 5664 ‘cfv 6536 (class class class)co 7410 supp csupp 8164 ↑m cmap 8845 Fincfn 8964 ℕcn 12245 ℕ0cn0 12506 Basecbs 17233 ↾s cress 17256 0gc0g 17458 Σg cgsu 17459 ℂfldccnfld 21320 mPoly cmpl 21871 mHomP cmhp 22072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-dm 5669 df-oprab 7414 df-mpo 7415 df-mhp 22079 |
| This theorem is referenced by: ismhp 22083 mhprcl 22086 mhpmulcl 22092 mhppwdeg 22093 mhpaddcl 22094 mhpinvcl 22095 mhpvscacl 22097 mhpind 42584 evlsmhpvvval 42585 mhphf2 42588 mhphf3 42589 |
| Copyright terms: Public domain | W3C validator |