MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpinvcl Structured version   Visualization version   GIF version

Theorem mhpinvcl 22179
Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.)
Hypotheses
Ref Expression
mhpinvcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpinvcl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpinvcl.m 𝑀 = (invg𝑃)
mhpinvcl.r (𝜑𝑅 ∈ Grp)
mhpinvcl.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpinvcl (𝜑 → (𝑀𝑋) ∈ (𝐻𝑁))

Proof of Theorem mhpinvcl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpinvcl.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 mhpinvcl.p . 2 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2740 . 2 (Base‘𝑃) = (Base‘𝑃)
4 eqid 2740 . 2 (0g𝑅) = (0g𝑅)
5 eqid 2740 . 2 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 reldmmhp 22164 . . 3 Rel dom mHomP
7 mhpinvcl.x . . 3 (𝜑𝑋 ∈ (𝐻𝑁))
86, 1, 7elfvov1 7490 . 2 (𝜑𝐼 ∈ V)
9 mhpinvcl.r . 2 (𝜑𝑅 ∈ Grp)
101, 7mhprcl 22170 . 2 (𝜑𝑁 ∈ ℕ0)
11 mhpinvcl.m . . 3 𝑀 = (invg𝑃)
122mplgrp 22060 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp)
138, 9, 12syl2anc 583 . . 3 (𝜑𝑃 ∈ Grp)
141, 2, 3, 7mhpmpl 22171 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
153, 11, 13, 14grpinvcld 19028 . 2 (𝜑 → (𝑀𝑋) ∈ (Base‘𝑃))
16 eqid 2740 . . . . . 6 (invg𝑅) = (invg𝑅)
172, 3, 16, 11, 8, 9, 14mplneg 22053 . . . . 5 (𝜑 → (𝑀𝑋) = ((invg𝑅) ∘ 𝑋))
1817oveq1d 7463 . . . 4 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) = (((invg𝑅) ∘ 𝑋) supp (0g𝑅)))
19 eqid 2740 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
2019, 16grpinvfn 19021 . . . . . 6 (invg𝑅) Fn (Base‘𝑅)
2120a1i 11 . . . . 5 (𝜑 → (invg𝑅) Fn (Base‘𝑅))
222, 19, 3, 5, 14mplelf 22041 . . . . 5 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23 ovex 7481 . . . . . . 7 (ℕ0m 𝐼) ∈ V
2423rabex 5357 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
2524a1i 11 . . . . 5 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
26 fvexd 6935 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
274, 16grpinvid 19039 . . . . . 6 (𝑅 ∈ Grp → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
289, 27syl 17 . . . . 5 (𝜑 → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
2921, 22, 25, 26, 28suppcoss 8248 . . . 4 (𝜑 → (((invg𝑅) ∘ 𝑋) supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅)))
3018, 29eqsstrd 4047 . . 3 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅)))
311, 4, 5, 7mhpdeg 22172 . . 3 (𝜑 → (𝑋 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
3230, 31sstrd 4019 . 2 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
331, 2, 3, 4, 5, 8, 9, 10, 15, 32ismhp2 22168 1 (𝜑 → (𝑀𝑋) ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  ccnv 5699  cima 5703  ccom 5704   Fn wfn 6568  cfv 6573  (class class class)co 7448   supp csupp 8201  m cmap 8884  Fincfn 9003  cn 12293  0cn0 12553  Basecbs 17258  s cress 17287  0gc0g 17499   Σg cgsu 17500  Grpcgrp 18973  invgcminusg 18974  fldccnfld 21387   mPoly cmpl 21949   mHomP cmhp 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163  df-psr 21952  df-mpl 21954  df-mhp 22163
This theorem is referenced by:  mhpsubg  22180
  Copyright terms: Public domain W3C validator