MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpinvcl Structured version   Visualization version   GIF version

Theorem mhpinvcl 21686
Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.)
Hypotheses
Ref Expression
mhpinvcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpinvcl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpinvcl.m 𝑀 = (invg𝑃)
mhpinvcl.i (𝜑𝐼𝑉)
mhpinvcl.r (𝜑𝑅 ∈ Grp)
mhpinvcl.n (𝜑𝑁 ∈ ℕ0)
mhpinvcl.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpinvcl (𝜑 → (𝑀𝑋) ∈ (𝐻𝑁))

Proof of Theorem mhpinvcl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpinvcl.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 mhpinvcl.p . 2 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2732 . 2 (Base‘𝑃) = (Base‘𝑃)
4 eqid 2732 . 2 (0g𝑅) = (0g𝑅)
5 eqid 2732 . 2 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpinvcl.i . 2 (𝜑𝐼𝑉)
7 mhpinvcl.r . 2 (𝜑𝑅 ∈ Grp)
8 mhpinvcl.n . 2 (𝜑𝑁 ∈ ℕ0)
92mplgrp 21567 . . . 4 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
106, 7, 9syl2anc 584 . . 3 (𝜑𝑃 ∈ Grp)
11 mhpinvcl.x . . . 4 (𝜑𝑋 ∈ (𝐻𝑁))
121, 2, 3, 6, 7, 8, 11mhpmpl 21678 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
13 mhpinvcl.m . . . 4 𝑀 = (invg𝑃)
143, 13grpinvcl 18868 . . 3 ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑀𝑋) ∈ (Base‘𝑃))
1510, 12, 14syl2anc 584 . 2 (𝜑 → (𝑀𝑋) ∈ (Base‘𝑃))
16 eqid 2732 . . . . . 6 (invg𝑅) = (invg𝑅)
172, 3, 16, 13, 6, 7, 12mplneg 21560 . . . . 5 (𝜑 → (𝑀𝑋) = ((invg𝑅) ∘ 𝑋))
1817oveq1d 7420 . . . 4 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) = (((invg𝑅) ∘ 𝑋) supp (0g𝑅)))
19 eqid 2732 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
2019, 16grpinvfn 18862 . . . . . 6 (invg𝑅) Fn (Base‘𝑅)
2120a1i 11 . . . . 5 (𝜑 → (invg𝑅) Fn (Base‘𝑅))
222, 19, 3, 5, 12mplelf 21548 . . . . 5 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23 ovex 7438 . . . . . . 7 (ℕ0m 𝐼) ∈ V
2423rabex 5331 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
2524a1i 11 . . . . 5 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
26 fvexd 6903 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
274, 16grpinvid 18880 . . . . . 6 (𝑅 ∈ Grp → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
287, 27syl 17 . . . . 5 (𝜑 → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
2921, 22, 25, 26, 28suppcoss 8188 . . . 4 (𝜑 → (((invg𝑅) ∘ 𝑋) supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅)))
3018, 29eqsstrd 4019 . . 3 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅)))
311, 4, 5, 6, 7, 8, 11mhpdeg 21679 . . 3 (𝜑 → (𝑋 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
3230, 31sstrd 3991 . 2 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
331, 2, 3, 4, 5, 6, 7, 8, 15, 32ismhp2 21676 1 (𝜑 → (𝑀𝑋) ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  ccnv 5674  cima 5678  ccom 5679   Fn wfn 6535  cfv 6540  (class class class)co 7405   supp csupp 8142  m cmap 8816  Fincfn 8935  cn 12208  0cn0 12468  Basecbs 17140  s cress 17169  0gc0g 17381   Σg cgsu 17382  Grpcgrp 18815  invgcminusg 18816  fldccnfld 20936   mPoly cmpl 21450   mHomP cmhp 21663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-prds 17389  df-pws 17391  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-subg 18997  df-psr 21453  df-mpl 21455  df-mhp 21667
This theorem is referenced by:  mhpsubg  21687
  Copyright terms: Public domain W3C validator