MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpinvcl Structured version   Visualization version   GIF version

Theorem mhpinvcl 22035
Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.)
Hypotheses
Ref Expression
mhpinvcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpinvcl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpinvcl.m 𝑀 = (invg𝑃)
mhpinvcl.i (𝜑𝐼𝑉)
mhpinvcl.r (𝜑𝑅 ∈ Grp)
mhpinvcl.n (𝜑𝑁 ∈ ℕ0)
mhpinvcl.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpinvcl (𝜑 → (𝑀𝑋) ∈ (𝐻𝑁))

Proof of Theorem mhpinvcl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpinvcl.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 mhpinvcl.p . 2 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2726 . 2 (Base‘𝑃) = (Base‘𝑃)
4 eqid 2726 . 2 (0g𝑅) = (0g𝑅)
5 eqid 2726 . 2 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpinvcl.i . 2 (𝜑𝐼𝑉)
7 mhpinvcl.r . 2 (𝜑𝑅 ∈ Grp)
8 mhpinvcl.n . 2 (𝜑𝑁 ∈ ℕ0)
92mplgrp 21918 . . . 4 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
106, 7, 9syl2anc 583 . . 3 (𝜑𝑃 ∈ Grp)
11 mhpinvcl.x . . . 4 (𝜑𝑋 ∈ (𝐻𝑁))
121, 2, 3, 6, 7, 8, 11mhpmpl 22027 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
13 mhpinvcl.m . . . 4 𝑀 = (invg𝑃)
143, 13grpinvcl 18917 . . 3 ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑀𝑋) ∈ (Base‘𝑃))
1510, 12, 14syl2anc 583 . 2 (𝜑 → (𝑀𝑋) ∈ (Base‘𝑃))
16 eqid 2726 . . . . . 6 (invg𝑅) = (invg𝑅)
172, 3, 16, 13, 6, 7, 12mplneg 21911 . . . . 5 (𝜑 → (𝑀𝑋) = ((invg𝑅) ∘ 𝑋))
1817oveq1d 7420 . . . 4 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) = (((invg𝑅) ∘ 𝑋) supp (0g𝑅)))
19 eqid 2726 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
2019, 16grpinvfn 18911 . . . . . 6 (invg𝑅) Fn (Base‘𝑅)
2120a1i 11 . . . . 5 (𝜑 → (invg𝑅) Fn (Base‘𝑅))
222, 19, 3, 5, 12mplelf 21899 . . . . 5 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23 ovex 7438 . . . . . . 7 (ℕ0m 𝐼) ∈ V
2423rabex 5325 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
2524a1i 11 . . . . 5 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
26 fvexd 6900 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
274, 16grpinvid 18929 . . . . . 6 (𝑅 ∈ Grp → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
287, 27syl 17 . . . . 5 (𝜑 → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
2921, 22, 25, 26, 28suppcoss 8193 . . . 4 (𝜑 → (((invg𝑅) ∘ 𝑋) supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅)))
3018, 29eqsstrd 4015 . . 3 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅)))
311, 4, 5, 6, 7, 8, 11mhpdeg 22028 . . 3 (𝜑 → (𝑋 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
3230, 31sstrd 3987 . 2 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
331, 2, 3, 4, 5, 6, 7, 8, 15, 32ismhp2 22025 1 (𝜑 → (𝑀𝑋) ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {crab 3426  Vcvv 3468  ccnv 5668  cima 5672  ccom 5673   Fn wfn 6532  cfv 6537  (class class class)co 7405   supp csupp 8146  m cmap 8822  Fincfn 8941  cn 12216  0cn0 12476  Basecbs 17153  s cress 17182  0gc0g 17394   Σg cgsu 17395  Grpcgrp 18863  invgcminusg 18864  fldccnfld 21240   mPoly cmpl 21800   mHomP cmhp 22014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13491  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-hom 17230  df-cco 17231  df-0g 17396  df-prds 17402  df-pws 17404  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18866  df-minusg 18867  df-subg 19050  df-psr 21803  df-mpl 21805  df-mhp 22021
This theorem is referenced by:  mhpsubg  22036
  Copyright terms: Public domain W3C validator