MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpinvcl Structured version   Visualization version   GIF version

Theorem mhpinvcl 22055
Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.)
Hypotheses
Ref Expression
mhpinvcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpinvcl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpinvcl.m 𝑀 = (invg𝑃)
mhpinvcl.r (𝜑𝑅 ∈ Grp)
mhpinvcl.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpinvcl (𝜑 → (𝑀𝑋) ∈ (𝐻𝑁))

Proof of Theorem mhpinvcl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpinvcl.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 mhpinvcl.p . 2 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2729 . 2 (Base‘𝑃) = (Base‘𝑃)
4 eqid 2729 . 2 (0g𝑅) = (0g𝑅)
5 eqid 2729 . 2 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpinvcl.x . . 3 (𝜑𝑋 ∈ (𝐻𝑁))
71, 6mhprcl 22046 . 2 (𝜑𝑁 ∈ ℕ0)
8 mhpinvcl.m . . 3 𝑀 = (invg𝑃)
9 reldmmhp 22040 . . . . 5 Rel dom mHomP
109, 1, 6elfvov1 7395 . . . 4 (𝜑𝐼 ∈ V)
11 mhpinvcl.r . . . 4 (𝜑𝑅 ∈ Grp)
122mplgrp 21942 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp)
1310, 11, 12syl2anc 584 . . 3 (𝜑𝑃 ∈ Grp)
141, 2, 3, 6mhpmpl 22047 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
153, 8, 13, 14grpinvcld 18885 . 2 (𝜑 → (𝑀𝑋) ∈ (Base‘𝑃))
16 eqid 2729 . . . . . 6 (invg𝑅) = (invg𝑅)
172, 3, 16, 8, 10, 11, 14mplneg 21935 . . . . 5 (𝜑 → (𝑀𝑋) = ((invg𝑅) ∘ 𝑋))
1817oveq1d 7368 . . . 4 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) = (((invg𝑅) ∘ 𝑋) supp (0g𝑅)))
19 eqid 2729 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
2019, 16grpinvfn 18878 . . . . . 6 (invg𝑅) Fn (Base‘𝑅)
2120a1i 11 . . . . 5 (𝜑 → (invg𝑅) Fn (Base‘𝑅))
222, 19, 3, 5, 14mplelf 21923 . . . . 5 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23 ovex 7386 . . . . . . 7 (ℕ0m 𝐼) ∈ V
2423rabex 5281 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
2524a1i 11 . . . . 5 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
26 fvexd 6841 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
274, 16grpinvid 18896 . . . . . 6 (𝑅 ∈ Grp → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
2811, 27syl 17 . . . . 5 (𝜑 → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
2921, 22, 25, 26, 28suppcoss 8147 . . . 4 (𝜑 → (((invg𝑅) ∘ 𝑋) supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅)))
3018, 29eqsstrd 3972 . . 3 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅)))
311, 4, 5, 6mhpdeg 22048 . . 3 (𝜑 → (𝑋 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
3230, 31sstrd 3948 . 2 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
331, 2, 3, 4, 5, 7, 15, 32ismhp2 22044 1 (𝜑 → (𝑀𝑋) ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  ccnv 5622  cima 5626  ccom 5627   Fn wfn 6481  cfv 6486  (class class class)co 7353   supp csupp 8100  m cmap 8760  Fincfn 8879  cn 12146  0cn0 12402  Basecbs 17138  s cress 17159  0gc0g 17361   Σg cgsu 17362  Grpcgrp 18830  invgcminusg 18831  fldccnfld 21279   mPoly cmpl 21831   mHomP cmhp 22032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-prds 17369  df-pws 17371  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-subg 19020  df-psr 21834  df-mpl 21836  df-mhp 22039
This theorem is referenced by:  mhpsubg  22056
  Copyright terms: Public domain W3C validator