![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhpinvcl | Structured version Visualization version GIF version |
Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.) |
Ref | Expression |
---|---|
mhpinvcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpinvcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpinvcl.m | ⊢ 𝑀 = (invg‘𝑃) |
mhpinvcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpinvcl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
mhpinvcl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhpinvcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpinvcl | ⊢ (𝜑 → (𝑀‘𝑋) ∈ (𝐻‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpinvcl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpinvcl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | eqid 2732 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
4 | eqid 2732 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2732 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | mhpinvcl.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | mhpinvcl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
8 | mhpinvcl.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | 2 | mplgrp 21567 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
10 | 6, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
11 | mhpinvcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
12 | 1, 2, 3, 6, 7, 8, 11 | mhpmpl 21678 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
13 | mhpinvcl.m | . . . 4 ⊢ 𝑀 = (invg‘𝑃) | |
14 | 3, 13 | grpinvcl 18868 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑀‘𝑋) ∈ (Base‘𝑃)) |
15 | 10, 12, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (Base‘𝑃)) |
16 | eqid 2732 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
17 | 2, 3, 16, 13, 6, 7, 12 | mplneg 21560 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑋) = ((invg‘𝑅) ∘ 𝑋)) |
18 | 17 | oveq1d 7420 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) = (((invg‘𝑅) ∘ 𝑋) supp (0g‘𝑅))) |
19 | eqid 2732 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
20 | 19, 16 | grpinvfn 18862 | . . . . . 6 ⊢ (invg‘𝑅) Fn (Base‘𝑅) |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → (invg‘𝑅) Fn (Base‘𝑅)) |
22 | 2, 19, 3, 5, 12 | mplelf 21548 | . . . . 5 ⊢ (𝜑 → 𝑋:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
23 | ovex 7438 | . . . . . . 7 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
24 | 23 | rabex 5331 | . . . . . 6 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V) |
26 | fvexd 6903 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
27 | 4, 16 | grpinvid 18880 | . . . . . 6 ⊢ (𝑅 ∈ Grp → ((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
28 | 7, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → ((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
29 | 21, 22, 25, 26, 28 | suppcoss 8188 | . . . 4 ⊢ (𝜑 → (((invg‘𝑅) ∘ 𝑋) supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅))) |
30 | 18, 29 | eqsstrd 4019 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅))) |
31 | 1, 4, 5, 6, 7, 8, 11 | mhpdeg 21679 | . . 3 ⊢ (𝜑 → (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
32 | 30, 31 | sstrd 3991 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
33 | 1, 2, 3, 4, 5, 6, 7, 8, 15, 32 | ismhp2 21676 | 1 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (𝐻‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 ◡ccnv 5674 “ cima 5678 ∘ ccom 5679 Fn wfn 6535 ‘cfv 6540 (class class class)co 7405 supp csupp 8142 ↑m cmap 8816 Fincfn 8935 ℕcn 12208 ℕ0cn0 12468 Basecbs 17140 ↾s cress 17169 0gc0g 17381 Σg cgsu 17382 Grpcgrp 18815 invgcminusg 18816 ℂfldccnfld 20936 mPoly cmpl 21450 mHomP cmhp 21663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-prds 17389 df-pws 17391 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-subg 18997 df-psr 21453 df-mpl 21455 df-mhp 21667 |
This theorem is referenced by: mhpsubg 21687 |
Copyright terms: Public domain | W3C validator |