| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpinvcl | Structured version Visualization version GIF version | ||
| Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| mhpinvcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpinvcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpinvcl.m | ⊢ 𝑀 = (invg‘𝑃) |
| mhpinvcl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| mhpinvcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhpinvcl | ⊢ (𝜑 → (𝑀‘𝑋) ∈ (𝐻‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpinvcl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpinvcl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2734 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 4 | eqid 2734 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2734 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | mhpinvcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
| 7 | 1, 6 | mhprcl 22096 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 8 | mhpinvcl.m | . . 3 ⊢ 𝑀 = (invg‘𝑃) | |
| 9 | reldmmhp 22090 | . . . . 5 ⊢ Rel dom mHomP | |
| 10 | 9, 1, 6 | elfvov1 7455 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 11 | mhpinvcl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 12 | 2 | mplgrp 21992 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
| 13 | 10, 11, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 14 | 1, 2, 3, 6 | mhpmpl 22097 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
| 15 | 3, 8, 13, 14 | grpinvcld 18976 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (Base‘𝑃)) |
| 16 | eqid 2734 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 17 | 2, 3, 16, 8, 10, 11, 14 | mplneg 21985 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑋) = ((invg‘𝑅) ∘ 𝑋)) |
| 18 | 17 | oveq1d 7428 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) = (((invg‘𝑅) ∘ 𝑋) supp (0g‘𝑅))) |
| 19 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 20 | 19, 16 | grpinvfn 18969 | . . . . . 6 ⊢ (invg‘𝑅) Fn (Base‘𝑅) |
| 21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → (invg‘𝑅) Fn (Base‘𝑅)) |
| 22 | 2, 19, 3, 5, 14 | mplelf 21973 | . . . . 5 ⊢ (𝜑 → 𝑋:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 23 | ovex 7446 | . . . . . . 7 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 24 | 23 | rabex 5319 | . . . . . 6 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V |
| 25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V) |
| 26 | fvexd 6901 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
| 27 | 4, 16 | grpinvid 18987 | . . . . . 6 ⊢ (𝑅 ∈ Grp → ((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
| 28 | 11, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → ((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
| 29 | 21, 22, 25, 26, 28 | suppcoss 8214 | . . . 4 ⊢ (𝜑 → (((invg‘𝑅) ∘ 𝑋) supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅))) |
| 30 | 18, 29 | eqsstrd 3998 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅))) |
| 31 | 1, 4, 5, 6 | mhpdeg 22098 | . . 3 ⊢ (𝜑 → (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 32 | 30, 31 | sstrd 3974 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 33 | 1, 2, 3, 4, 5, 7, 15, 32 | ismhp2 22094 | 1 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (𝐻‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 ◡ccnv 5664 “ cima 5668 ∘ ccom 5669 Fn wfn 6536 ‘cfv 6541 (class class class)co 7413 supp csupp 8167 ↑m cmap 8848 Fincfn 8967 ℕcn 12248 ℕ0cn0 12509 Basecbs 17230 ↾s cress 17253 0gc0g 17456 Σg cgsu 17457 Grpcgrp 18921 invgcminusg 18922 ℂfldccnfld 21327 mPoly cmpl 21881 mHomP cmhp 22082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-hom 17298 df-cco 17299 df-0g 17458 df-prds 17464 df-pws 17466 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-subg 19111 df-psr 21884 df-mpl 21886 df-mhp 22089 |
| This theorem is referenced by: mhpsubg 22106 |
| Copyright terms: Public domain | W3C validator |