![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhpinvcl | Structured version Visualization version GIF version |
Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.) |
Ref | Expression |
---|---|
mhpinvcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpinvcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpinvcl.m | ⊢ 𝑀 = (invg‘𝑃) |
mhpinvcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpinvcl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
mhpinvcl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhpinvcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpinvcl | ⊢ (𝜑 → (𝑀‘𝑋) ∈ (𝐻‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpinvcl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpinvcl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | eqid 2736 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
4 | eqid 2736 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2736 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | mhpinvcl.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | mhpinvcl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
8 | mhpinvcl.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | 2 | mplgrp 21422 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
10 | 6, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
11 | mhpinvcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
12 | 1, 2, 3, 6, 7, 8, 11 | mhpmpl 21534 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
13 | mhpinvcl.m | . . . 4 ⊢ 𝑀 = (invg‘𝑃) | |
14 | 3, 13 | grpinvcl 18798 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑀‘𝑋) ∈ (Base‘𝑃)) |
15 | 10, 12, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (Base‘𝑃)) |
16 | eqid 2736 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
17 | 2, 3, 16, 13, 6, 7, 12 | mplneg 21414 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑋) = ((invg‘𝑅) ∘ 𝑋)) |
18 | 17 | oveq1d 7372 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) = (((invg‘𝑅) ∘ 𝑋) supp (0g‘𝑅))) |
19 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
20 | 19, 16 | grpinvfn 18792 | . . . . . 6 ⊢ (invg‘𝑅) Fn (Base‘𝑅) |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → (invg‘𝑅) Fn (Base‘𝑅)) |
22 | 2, 19, 3, 5, 12 | mplelf 21404 | . . . . 5 ⊢ (𝜑 → 𝑋:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
23 | ovex 7390 | . . . . . . 7 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
24 | 23 | rabex 5289 | . . . . . 6 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V) |
26 | fvexd 6857 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
27 | 4, 16 | grpinvid 18808 | . . . . . 6 ⊢ (𝑅 ∈ Grp → ((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
28 | 7, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → ((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
29 | 21, 22, 25, 26, 28 | suppcoss 8138 | . . . 4 ⊢ (𝜑 → (((invg‘𝑅) ∘ 𝑋) supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅))) |
30 | 18, 29 | eqsstrd 3982 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅))) |
31 | 1, 4, 5, 6, 7, 8, 11 | mhpdeg 21535 | . . 3 ⊢ (𝜑 → (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
32 | 30, 31 | sstrd 3954 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
33 | 1, 2, 3, 4, 5, 6, 7, 8, 15, 32 | ismhp2 21532 | 1 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (𝐻‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3407 Vcvv 3445 ◡ccnv 5632 “ cima 5636 ∘ ccom 5637 Fn wfn 6491 ‘cfv 6496 (class class class)co 7357 supp csupp 8092 ↑m cmap 8765 Fincfn 8883 ℕcn 12153 ℕ0cn0 12413 Basecbs 17083 ↾s cress 17112 0gc0g 17321 Σg cgsu 17322 Grpcgrp 18748 invgcminusg 18749 ℂfldccnfld 20796 mPoly cmpl 21308 mHomP cmhp 21519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-prds 17329 df-pws 17331 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-subg 18925 df-psr 21311 df-mpl 21313 df-mhp 21523 |
This theorem is referenced by: mhpsubg 21543 |
Copyright terms: Public domain | W3C validator |