MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpinvcl Structured version   Visualization version   GIF version

Theorem mhpinvcl 22045
Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.)
Hypotheses
Ref Expression
mhpinvcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpinvcl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpinvcl.m 𝑀 = (invg𝑃)
mhpinvcl.r (𝜑𝑅 ∈ Grp)
mhpinvcl.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpinvcl (𝜑 → (𝑀𝑋) ∈ (𝐻𝑁))

Proof of Theorem mhpinvcl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpinvcl.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 mhpinvcl.p . 2 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2730 . 2 (Base‘𝑃) = (Base‘𝑃)
4 eqid 2730 . 2 (0g𝑅) = (0g𝑅)
5 eqid 2730 . 2 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpinvcl.x . . 3 (𝜑𝑋 ∈ (𝐻𝑁))
71, 6mhprcl 22036 . 2 (𝜑𝑁 ∈ ℕ0)
8 mhpinvcl.m . . 3 𝑀 = (invg𝑃)
9 reldmmhp 22030 . . . . 5 Rel dom mHomP
109, 1, 6elfvov1 7431 . . . 4 (𝜑𝐼 ∈ V)
11 mhpinvcl.r . . . 4 (𝜑𝑅 ∈ Grp)
122mplgrp 21932 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp)
1310, 11, 12syl2anc 584 . . 3 (𝜑𝑃 ∈ Grp)
141, 2, 3, 6mhpmpl 22037 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
153, 8, 13, 14grpinvcld 18926 . 2 (𝜑 → (𝑀𝑋) ∈ (Base‘𝑃))
16 eqid 2730 . . . . . 6 (invg𝑅) = (invg𝑅)
172, 3, 16, 8, 10, 11, 14mplneg 21925 . . . . 5 (𝜑 → (𝑀𝑋) = ((invg𝑅) ∘ 𝑋))
1817oveq1d 7404 . . . 4 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) = (((invg𝑅) ∘ 𝑋) supp (0g𝑅)))
19 eqid 2730 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
2019, 16grpinvfn 18919 . . . . . 6 (invg𝑅) Fn (Base‘𝑅)
2120a1i 11 . . . . 5 (𝜑 → (invg𝑅) Fn (Base‘𝑅))
222, 19, 3, 5, 14mplelf 21913 . . . . 5 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23 ovex 7422 . . . . . . 7 (ℕ0m 𝐼) ∈ V
2423rabex 5296 . . . . . 6 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V
2524a1i 11 . . . . 5 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
26 fvexd 6875 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
274, 16grpinvid 18937 . . . . . 6 (𝑅 ∈ Grp → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
2811, 27syl 17 . . . . 5 (𝜑 → ((invg𝑅)‘(0g𝑅)) = (0g𝑅))
2921, 22, 25, 26, 28suppcoss 8188 . . . 4 (𝜑 → (((invg𝑅) ∘ 𝑋) supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅)))
3018, 29eqsstrd 3983 . . 3 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) ⊆ (𝑋 supp (0g𝑅)))
311, 4, 5, 6mhpdeg 22038 . . 3 (𝜑 → (𝑋 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
3230, 31sstrd 3959 . 2 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
331, 2, 3, 4, 5, 7, 15, 32ismhp2 22034 1 (𝜑 → (𝑀𝑋) ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  ccnv 5639  cima 5643  ccom 5644   Fn wfn 6508  cfv 6513  (class class class)co 7389   supp csupp 8141  m cmap 8801  Fincfn 8920  cn 12187  0cn0 12448  Basecbs 17185  s cress 17206  0gc0g 17408   Σg cgsu 17409  Grpcgrp 18871  invgcminusg 18872  fldccnfld 21270   mPoly cmpl 21821   mHomP cmhp 22022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-sup 9399  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17410  df-prds 17416  df-pws 17418  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-subg 19061  df-psr 21824  df-mpl 21826  df-mhp 22029
This theorem is referenced by:  mhpsubg  22046
  Copyright terms: Public domain W3C validator