![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhpinvcl | Structured version Visualization version GIF version |
Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
Ref | Expression |
---|---|
mhpinvcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpinvcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpinvcl.m | ⊢ 𝑀 = (invg‘𝑃) |
mhpinvcl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
mhpinvcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpinvcl | ⊢ (𝜑 → (𝑀‘𝑋) ∈ (𝐻‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpinvcl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpinvcl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | eqid 2735 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
4 | eqid 2735 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2735 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | mhpinvcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
7 | 1, 6 | mhprcl 22165 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
8 | mhpinvcl.m | . . 3 ⊢ 𝑀 = (invg‘𝑃) | |
9 | reldmmhp 22159 | . . . . 5 ⊢ Rel dom mHomP | |
10 | 9, 1, 6 | elfvov1 7473 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
11 | mhpinvcl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
12 | 2 | mplgrp 22055 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
13 | 10, 11, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
14 | 1, 2, 3, 6 | mhpmpl 22166 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
15 | 3, 8, 13, 14 | grpinvcld 19019 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (Base‘𝑃)) |
16 | eqid 2735 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
17 | 2, 3, 16, 8, 10, 11, 14 | mplneg 22048 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑋) = ((invg‘𝑅) ∘ 𝑋)) |
18 | 17 | oveq1d 7446 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) = (((invg‘𝑅) ∘ 𝑋) supp (0g‘𝑅))) |
19 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
20 | 19, 16 | grpinvfn 19012 | . . . . . 6 ⊢ (invg‘𝑅) Fn (Base‘𝑅) |
21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → (invg‘𝑅) Fn (Base‘𝑅)) |
22 | 2, 19, 3, 5, 14 | mplelf 22036 | . . . . 5 ⊢ (𝜑 → 𝑋:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
23 | ovex 7464 | . . . . . . 7 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
24 | 23 | rabex 5345 | . . . . . 6 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V |
25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V) |
26 | fvexd 6922 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
27 | 4, 16 | grpinvid 19030 | . . . . . 6 ⊢ (𝑅 ∈ Grp → ((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
28 | 11, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → ((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
29 | 21, 22, 25, 26, 28 | suppcoss 8231 | . . . 4 ⊢ (𝜑 → (((invg‘𝑅) ∘ 𝑋) supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅))) |
30 | 18, 29 | eqsstrd 4034 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅))) |
31 | 1, 4, 5, 6 | mhpdeg 22167 | . . 3 ⊢ (𝜑 → (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
32 | 30, 31 | sstrd 4006 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
33 | 1, 2, 3, 4, 5, 7, 15, 32 | ismhp2 22163 | 1 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (𝐻‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 ◡ccnv 5688 “ cima 5692 ∘ ccom 5693 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 supp csupp 8184 ↑m cmap 8865 Fincfn 8984 ℕcn 12264 ℕ0cn0 12524 Basecbs 17245 ↾s cress 17274 0gc0g 17486 Σg cgsu 17487 Grpcgrp 18964 invgcminusg 18965 ℂfldccnfld 21382 mPoly cmpl 21944 mHomP cmhp 22151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-prds 17494 df-pws 17496 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-subg 19154 df-psr 21947 df-mpl 21949 df-mhp 22158 |
This theorem is referenced by: mhpsubg 22175 |
Copyright terms: Public domain | W3C validator |