MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpinvcl Structured version   Visualization version   GIF version

Theorem mhpinvcl 20339
Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.)
Hypotheses
Ref Expression
mhpinvcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpinvcl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpinvcl.m 𝑀 = (invg𝑃)
mhpinvcl.i (𝜑𝐼𝑉)
mhpinvcl.r (𝜑𝑅 ∈ Grp)
mhpinvcl.n (𝜑𝑁 ∈ ℕ0)
mhpinvcl.x (𝜑𝑋 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpinvcl (𝜑 → (𝑀𝑋) ∈ (𝐻𝑁))

Proof of Theorem mhpinvcl
Dummy variables 𝑔 𝑗 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpinvcl.i . . . 4 (𝜑𝐼𝑉)
2 mhpinvcl.r . . . 4 (𝜑𝑅 ∈ Grp)
3 mhpinvcl.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
43mplgrp 20230 . . . 4 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
51, 2, 4syl2anc 586 . . 3 (𝜑𝑃 ∈ Grp)
6 mhpinvcl.h . . . 4 𝐻 = (𝐼 mHomP 𝑅)
7 eqid 2821 . . . 4 (Base‘𝑃) = (Base‘𝑃)
8 mhpinvcl.n . . . 4 (𝜑𝑁 ∈ ℕ0)
9 mhpinvcl.x . . . 4 (𝜑𝑋 ∈ (𝐻𝑁))
106, 3, 7, 1, 2, 8, 9mhpmpl 20335 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
11 mhpinvcl.m . . . 4 𝑀 = (invg𝑃)
127, 11grpinvcl 18151 . . 3 ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑀𝑋) ∈ (Base‘𝑃))
135, 10, 12syl2anc 586 . 2 (𝜑 → (𝑀𝑋) ∈ (Base‘𝑃))
14 eqid 2821 . . . . . . . 8 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
15 eqid 2821 . . . . . . . . . 10 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
16 eqid 2821 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
173, 14, 15, 16, 7mplbas 20209 . . . . . . . . 9 (Base‘𝑃) = {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)}
1817eqcomi 2830 . . . . . . . 8 {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)} = (Base‘𝑃)
1914, 3, 18, 1, 2mplsubg 20217 . . . . . . 7 (𝜑 → {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)} ∈ (SubGrp‘(𝐼 mPwSer 𝑅)))
2010, 17eleqtrdi 2923 . . . . . . 7 (𝜑𝑋 ∈ {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)})
21 eqid 2821 . . . . . . . . 9 {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)} = {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)}
223, 14, 15, 16, 21mplval 20208 . . . . . . . 8 𝑃 = ((𝐼 mPwSer 𝑅) ↾s {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)})
23 eqid 2821 . . . . . . . 8 (invg‘(𝐼 mPwSer 𝑅)) = (invg‘(𝐼 mPwSer 𝑅))
2422, 23, 11subginv 18286 . . . . . . 7 (({𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)} ∈ (SubGrp‘(𝐼 mPwSer 𝑅)) ∧ 𝑋 ∈ {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)}) → ((invg‘(𝐼 mPwSer 𝑅))‘𝑋) = (𝑀𝑋))
2519, 20, 24syl2anc 586 . . . . . 6 (𝜑 → ((invg‘(𝐼 mPwSer 𝑅))‘𝑋) = (𝑀𝑋))
26 eqid 2821 . . . . . . 7 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
27 eqid 2821 . . . . . . 7 (invg𝑅) = (invg𝑅)
283, 14, 15, 16, 7mplelbas 20210 . . . . . . . . 9 (𝑋 ∈ (Base‘𝑃) ↔ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑋 finSupp (0g𝑅)))
2910, 28sylib 220 . . . . . . . 8 (𝜑 → (𝑋 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑋 finSupp (0g𝑅)))
3029simpld 497 . . . . . . 7 (𝜑𝑋 ∈ (Base‘(𝐼 mPwSer 𝑅)))
3114, 1, 2, 26, 27, 15, 23, 30psrneg 20180 . . . . . 6 (𝜑 → ((invg‘(𝐼 mPwSer 𝑅))‘𝑋) = ((invg𝑅) ∘ 𝑋))
3225, 31eqtr3d 2858 . . . . 5 (𝜑 → (𝑀𝑋) = ((invg𝑅) ∘ 𝑋))
3332oveq1d 7171 . . . 4 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) = (((invg𝑅) ∘ 𝑋) supp (0g𝑅)))
34 fvexd 6685 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
35 eqid 2821 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
3635, 27grpinvf 18150 . . . . . . 7 (𝑅 ∈ Grp → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
372, 36syl 17 . . . . . 6 (𝜑 → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
3837ffnd 6515 . . . . 5 (𝜑 → (invg𝑅) Fn (Base‘𝑅))
39 fvexd 6685 . . . . 5 (𝜑 → (Base‘𝑅) ∈ V)
403, 35, 7, 26, 10mplelf 20213 . . . . . 6 (𝜑𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
4140ffnd 6515 . . . . 5 (𝜑𝑋 Fn {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
42 ovexd 7191 . . . . . 6 (𝜑 → (ℕ0m 𝐼) ∈ V)
4326, 42rabexd 5236 . . . . 5 (𝜑 → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
4434, 38, 39, 41, 43suppcofnd 7871 . . . 4 (𝜑 → (((invg𝑅) ∘ 𝑋) supp (0g𝑅)) = {𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ ((𝑋𝑥) ∈ (Base‘𝑅) ∧ ((invg𝑅)‘(𝑋𝑥)) ≠ (0g𝑅))})
45 suppvalfn 7837 . . . . . 6 ((𝑋 Fn {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V ∧ (0g𝑅) ∈ V) → (𝑋 supp (0g𝑅)) = {𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ (𝑋𝑥) ≠ (0g𝑅)})
4641, 43, 34, 45syl3anc 1367 . . . . 5 (𝜑 → (𝑋 supp (0g𝑅)) = {𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ (𝑋𝑥) ≠ (0g𝑅)})
472adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Grp)
4840ffvelrnda 6851 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑋𝑥) ∈ (Base‘𝑅))
4935, 16grpidcl 18131 . . . . . . . . . . 11 (𝑅 ∈ Grp → (0g𝑅) ∈ (Base‘𝑅))
5047, 49syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (0g𝑅) ∈ (Base‘𝑅))
51 eqid 2821 . . . . . . . . . . 11 (+g𝑅) = (+g𝑅)
5235, 51, 16, 27grpinvid1 18154 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅)) → (((invg𝑅)‘(𝑋𝑥)) = (0g𝑅) ↔ ((𝑋𝑥)(+g𝑅)(0g𝑅)) = (0g𝑅)))
5347, 48, 50, 52syl3anc 1367 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((invg𝑅)‘(𝑋𝑥)) = (0g𝑅) ↔ ((𝑋𝑥)(+g𝑅)(0g𝑅)) = (0g𝑅)))
5435, 51, 16grprid 18134 . . . . . . . . . . 11 ((𝑅 ∈ Grp ∧ (𝑋𝑥) ∈ (Base‘𝑅)) → ((𝑋𝑥)(+g𝑅)(0g𝑅)) = (𝑋𝑥))
5547, 48, 54syl2anc 586 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑋𝑥)(+g𝑅)(0g𝑅)) = (𝑋𝑥))
5655eqeq1d 2823 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((𝑋𝑥)(+g𝑅)(0g𝑅)) = (0g𝑅) ↔ (𝑋𝑥) = (0g𝑅)))
5753, 56bitr2d 282 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑋𝑥) = (0g𝑅) ↔ ((invg𝑅)‘(𝑋𝑥)) = (0g𝑅)))
5857necon3bid 3060 . . . . . . 7 ((𝜑𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑋𝑥) ≠ (0g𝑅) ↔ ((invg𝑅)‘(𝑋𝑥)) ≠ (0g𝑅)))
5948biantrurd 535 . . . . . . 7 ((𝜑𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (((invg𝑅)‘(𝑋𝑥)) ≠ (0g𝑅) ↔ ((𝑋𝑥) ∈ (Base‘𝑅) ∧ ((invg𝑅)‘(𝑋𝑥)) ≠ (0g𝑅))))
6058, 59bitrd 281 . . . . . 6 ((𝜑𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑋𝑥) ≠ (0g𝑅) ↔ ((𝑋𝑥) ∈ (Base‘𝑅) ∧ ((invg𝑅)‘(𝑋𝑥)) ≠ (0g𝑅))))
6160rabbidva 3478 . . . . 5 (𝜑 → {𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ (𝑋𝑥) ≠ (0g𝑅)} = {𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ ((𝑋𝑥) ∈ (Base‘𝑅) ∧ ((invg𝑅)‘(𝑋𝑥)) ≠ (0g𝑅))})
6246, 61eqtr2d 2857 . . . 4 (𝜑 → {𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ ((𝑋𝑥) ∈ (Base‘𝑅) ∧ ((invg𝑅)‘(𝑋𝑥)) ≠ (0g𝑅))} = (𝑋 supp (0g𝑅)))
6333, 44, 623eqtrd 2860 . . 3 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) = (𝑋 supp (0g𝑅)))
64 eqid 2821 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
656, 16, 64, 1, 2, 8, 9mhpdeg 20336 . . 3 (𝜑 → (𝑋 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑁})
6663, 65eqsstrd 4005 . 2 (𝜑 → ((𝑀𝑋) supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑁})
676, 3, 7, 16, 64, 1, 2, 8ismhp 20334 . 2 (𝜑 → ((𝑀𝑋) ∈ (𝐻𝑁) ↔ ((𝑀𝑋) ∈ (Base‘𝑃) ∧ ((𝑀𝑋) supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑁})))
6813, 66, 67mpbir2and 711 1 (𝜑 → (𝑀𝑋) ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  {crab 3142  Vcvv 3494  wss 3936   class class class wbr 5066  ccnv 5554  cima 5558  ccom 5559   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156   supp csupp 7830  m cmap 8406  Fincfn 8509   finSupp cfsupp 8833  cn 11638  0cn0 11898  Σcsu 15042  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Grpcgrp 18103  invgcminusg 18104  SubGrpcsubg 18273   mPwSer cmps 20131   mPoly cmpl 20133   mHomP cmhp 20322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-tset 16584  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-subg 18276  df-psr 20136  df-mpl 20138  df-mhp 20326
This theorem is referenced by:  mhpsubg  20340
  Copyright terms: Public domain W3C validator