| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpinvcl | Structured version Visualization version GIF version | ||
| Description: Homogeneous polynomials are closed under taking the opposite. (Contributed by SN, 12-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| mhpinvcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpinvcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpinvcl.m | ⊢ 𝑀 = (invg‘𝑃) |
| mhpinvcl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| mhpinvcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhpinvcl | ⊢ (𝜑 → (𝑀‘𝑋) ∈ (𝐻‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpinvcl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpinvcl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2730 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 4 | eqid 2730 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2730 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | mhpinvcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
| 7 | 1, 6 | mhprcl 22036 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 8 | mhpinvcl.m | . . 3 ⊢ 𝑀 = (invg‘𝑃) | |
| 9 | reldmmhp 22030 | . . . . 5 ⊢ Rel dom mHomP | |
| 10 | 9, 1, 6 | elfvov1 7431 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 11 | mhpinvcl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 12 | 2 | mplgrp 21932 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
| 13 | 10, 11, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 14 | 1, 2, 3, 6 | mhpmpl 22037 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
| 15 | 3, 8, 13, 14 | grpinvcld 18926 | . 2 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (Base‘𝑃)) |
| 16 | eqid 2730 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 17 | 2, 3, 16, 8, 10, 11, 14 | mplneg 21925 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝑋) = ((invg‘𝑅) ∘ 𝑋)) |
| 18 | 17 | oveq1d 7404 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) = (((invg‘𝑅) ∘ 𝑋) supp (0g‘𝑅))) |
| 19 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 20 | 19, 16 | grpinvfn 18919 | . . . . . 6 ⊢ (invg‘𝑅) Fn (Base‘𝑅) |
| 21 | 20 | a1i 11 | . . . . 5 ⊢ (𝜑 → (invg‘𝑅) Fn (Base‘𝑅)) |
| 22 | 2, 19, 3, 5, 14 | mplelf 21913 | . . . . 5 ⊢ (𝜑 → 𝑋:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 23 | ovex 7422 | . . . . . . 7 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 24 | 23 | rabex 5296 | . . . . . 6 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V |
| 25 | 24 | a1i 11 | . . . . 5 ⊢ (𝜑 → {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V) |
| 26 | fvexd 6875 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
| 27 | 4, 16 | grpinvid 18937 | . . . . . 6 ⊢ (𝑅 ∈ Grp → ((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
| 28 | 11, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → ((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
| 29 | 21, 22, 25, 26, 28 | suppcoss 8188 | . . . 4 ⊢ (𝜑 → (((invg‘𝑅) ∘ 𝑋) supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅))) |
| 30 | 18, 29 | eqsstrd 3983 | . . 3 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) ⊆ (𝑋 supp (0g‘𝑅))) |
| 31 | 1, 4, 5, 6 | mhpdeg 22038 | . . 3 ⊢ (𝜑 → (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 32 | 30, 31 | sstrd 3959 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 33 | 1, 2, 3, 4, 5, 7, 15, 32 | ismhp2 22034 | 1 ⊢ (𝜑 → (𝑀‘𝑋) ∈ (𝐻‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ◡ccnv 5639 “ cima 5643 ∘ ccom 5644 Fn wfn 6508 ‘cfv 6513 (class class class)co 7389 supp csupp 8141 ↑m cmap 8801 Fincfn 8920 ℕcn 12187 ℕ0cn0 12448 Basecbs 17185 ↾s cress 17206 0gc0g 17408 Σg cgsu 17409 Grpcgrp 18871 invgcminusg 18872 ℂfldccnfld 21270 mPoly cmpl 21821 mHomP cmhp 22022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17410 df-prds 17416 df-pws 17418 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-subg 19061 df-psr 21824 df-mpl 21826 df-mhp 22029 |
| This theorem is referenced by: mhpsubg 22046 |
| Copyright terms: Public domain | W3C validator |