MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpvscacl Structured version   Visualization version   GIF version

Theorem mhpvscacl 22097
Description: Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.)
Hypotheses
Ref Expression
mhpvscacl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpvscacl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpvscacl.t · = ( ·𝑠𝑃)
mhpvscacl.k 𝐾 = (Base‘𝑅)
mhpvscacl.r (𝜑𝑅 ∈ Ring)
mhpvscacl.x (𝜑𝑋𝐾)
mhpvscacl.f (𝜑𝐹 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpvscacl (𝜑 → (𝑋 · 𝐹) ∈ (𝐻𝑁))

Proof of Theorem mhpvscacl
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpvscacl.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 mhpvscacl.p . 2 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2736 . 2 (Base‘𝑃) = (Base‘𝑃)
4 eqid 2736 . 2 (0g𝑅) = (0g𝑅)
5 eqid 2736 . 2 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpvscacl.f . . 3 (𝜑𝐹 ∈ (𝐻𝑁))
71, 6mhprcl 22086 . 2 (𝜑𝑁 ∈ ℕ0)
8 eqid 2736 . . 3 (Scalar‘𝑃) = (Scalar‘𝑃)
9 mhpvscacl.t . . 3 · = ( ·𝑠𝑃)
10 eqid 2736 . . 3 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
11 reldmmhp 22080 . . . . 5 Rel dom mHomP
1211, 1, 6elfvov1 7452 . . . 4 (𝜑𝐼 ∈ V)
13 mhpvscacl.r . . . 4 (𝜑𝑅 ∈ Ring)
142, 12, 13mpllmodd 21989 . . 3 (𝜑𝑃 ∈ LMod)
15 mhpvscacl.x . . . . 5 (𝜑𝑋𝐾)
16 mhpvscacl.k . . . . 5 𝐾 = (Base‘𝑅)
1715, 16eleqtrdi 2845 . . . 4 (𝜑𝑋 ∈ (Base‘𝑅))
182, 12, 13mplsca 21978 . . . . 5 (𝜑𝑅 = (Scalar‘𝑃))
1918fveq2d 6885 . . . 4 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
2017, 19eleqtrd 2837 . . 3 (𝜑𝑋 ∈ (Base‘(Scalar‘𝑃)))
211, 2, 3, 6mhpmpl 22087 . . 3 (𝜑𝐹 ∈ (Base‘𝑃))
223, 8, 9, 10, 14, 20, 21lmodvscld 20841 . 2 (𝜑 → (𝑋 · 𝐹) ∈ (Base‘𝑃))
232, 16, 3, 5, 22mplelf 21963 . . . 4 (𝜑 → (𝑋 · 𝐹):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
24 eqid 2736 . . . . . 6 (.r𝑅) = (.r𝑅)
2515adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → 𝑋𝐾)
2621adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → 𝐹 ∈ (Base‘𝑃))
27 eldifi 4111 . . . . . . 7 (𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅))) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2827adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
292, 9, 16, 3, 24, 5, 25, 26, 28mplvscaval 21981 . . . . 5 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (𝑋(.r𝑅)(𝐹𝑘)))
302, 16, 3, 5, 21mplelf 21963 . . . . . . 7 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
31 ssidd 3987 . . . . . . 7 (𝜑 → (𝐹 supp (0g𝑅)) ⊆ (𝐹 supp (0g𝑅)))
32 fvexd 6896 . . . . . . 7 (𝜑 → (0g𝑅) ∈ V)
3330, 31, 6, 32suppssrg 8200 . . . . . 6 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → (𝐹𝑘) = (0g𝑅))
3433oveq2d 7426 . . . . 5 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → (𝑋(.r𝑅)(𝐹𝑘)) = (𝑋(.r𝑅)(0g𝑅)))
3516, 24, 4, 13, 15ringrzd 20261 . . . . . 6 (𝜑 → (𝑋(.r𝑅)(0g𝑅)) = (0g𝑅))
3635adantr 480 . . . . 5 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → (𝑋(.r𝑅)(0g𝑅)) = (0g𝑅))
3729, 34, 363eqtrd 2775 . . . 4 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (0g𝑅))
3823, 37suppss 8198 . . 3 (𝜑 → ((𝑋 · 𝐹) supp (0g𝑅)) ⊆ (𝐹 supp (0g𝑅)))
391, 4, 5, 6mhpdeg 22088 . . 3 (𝜑 → (𝐹 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
4038, 39sstrd 3974 . 2 (𝜑 → ((𝑋 · 𝐹) supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
411, 2, 3, 4, 5, 7, 22, 40ismhp2 22084 1 (𝜑 → (𝑋 · 𝐹) ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  cdif 3928  ccnv 5658  cima 5662  cfv 6536  (class class class)co 7410   supp csupp 8164  m cmap 8845  Fincfn 8964  cn 12245  0cn0 12506  Basecbs 17233  s cress 17256  .rcmulr 17277  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458   Σg cgsu 17459  Ringcrg 20198  fldccnfld 21320   mPoly cmpl 21871   mHomP cmhp 22072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-prds 17466  df-pws 17468  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-lmod 20824  df-lss 20894  df-psr 21874  df-mpl 21876  df-mhp 22079
This theorem is referenced by:  mhplss  22098
  Copyright terms: Public domain W3C validator