| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpvscacl | Structured version Visualization version GIF version | ||
| Description: Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| mhpvscacl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpvscacl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpvscacl.t | ⊢ · = ( ·𝑠 ‘𝑃) |
| mhpvscacl.k | ⊢ 𝐾 = (Base‘𝑅) |
| mhpvscacl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mhpvscacl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| mhpvscacl.f | ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhpvscacl | ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpvscacl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpvscacl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2736 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 4 | eqid 2736 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2736 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | mhpvscacl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) | |
| 7 | 1, 6 | mhprcl 22086 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 8 | eqid 2736 | . . 3 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
| 9 | mhpvscacl.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 10 | eqid 2736 | . . 3 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
| 11 | reldmmhp 22080 | . . . . 5 ⊢ Rel dom mHomP | |
| 12 | 11, 1, 6 | elfvov1 7452 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 13 | mhpvscacl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 14 | 2, 12, 13 | mpllmodd 21989 | . . 3 ⊢ (𝜑 → 𝑃 ∈ LMod) |
| 15 | mhpvscacl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 16 | mhpvscacl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 17 | 15, 16 | eleqtrdi 2845 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| 18 | 2, 12, 13 | mplsca 21978 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
| 19 | 18 | fveq2d 6885 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 20 | 17, 19 | eleqtrd 2837 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑃))) |
| 21 | 1, 2, 3, 6 | mhpmpl 22087 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘𝑃)) |
| 22 | 3, 8, 9, 10, 14, 20, 21 | lmodvscld 20841 | . 2 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (Base‘𝑃)) |
| 23 | 2, 16, 3, 5, 22 | mplelf 21963 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝐹):{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
| 24 | eqid 2736 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 25 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝑋 ∈ 𝐾) |
| 26 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝐹 ∈ (Base‘𝑃)) |
| 27 | eldifi 4111 | . . . . . . 7 ⊢ (𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅))) → 𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
| 28 | 27 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) |
| 29 | 2, 9, 16, 3, 24, 5, 25, 26, 28 | mplvscaval 21981 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (𝑋(.r‘𝑅)(𝐹‘𝑘))) |
| 30 | 2, 16, 3, 5, 21 | mplelf 21963 | . . . . . . 7 ⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
| 31 | ssidd 3987 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) | |
| 32 | fvexd 6896 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
| 33 | 30, 31, 6, 32 | suppssrg 8200 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝐹‘𝑘) = (0g‘𝑅)) |
| 34 | 33 | oveq2d 7426 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝑋(.r‘𝑅)(𝐹‘𝑘)) = (𝑋(.r‘𝑅)(0g‘𝑅))) |
| 35 | 16, 24, 4, 13, 15 | ringrzd 20261 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 36 | 35 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 37 | 29, 34, 36 | 3eqtrd 2775 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (0g‘𝑅)) |
| 38 | 23, 37 | suppss 8198 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝐹) supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) |
| 39 | 1, 4, 5, 6 | mhpdeg 22088 | . . 3 ⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 40 | 38, 39 | sstrd 3974 | . 2 ⊢ (𝜑 → ((𝑋 · 𝐹) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 41 | 1, 2, 3, 4, 5, 7, 22, 40 | ismhp2 22084 | 1 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 ∖ cdif 3928 ◡ccnv 5658 “ cima 5662 ‘cfv 6536 (class class class)co 7410 supp csupp 8164 ↑m cmap 8845 Fincfn 8964 ℕcn 12245 ℕ0cn0 12506 Basecbs 17233 ↾s cress 17256 .rcmulr 17277 Scalarcsca 17279 ·𝑠 cvsca 17280 0gc0g 17458 Σg cgsu 17459 Ringcrg 20198 ℂfldccnfld 21320 mPoly cmpl 21871 mHomP cmhp 22072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-hom 17300 df-cco 17301 df-0g 17460 df-prds 17466 df-pws 17468 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-lmod 20824 df-lss 20894 df-psr 21874 df-mpl 21876 df-mhp 22079 |
| This theorem is referenced by: mhplss 22098 |
| Copyright terms: Public domain | W3C validator |