Step | Hyp | Ref
| Expression |
1 | | mhpvscacl.h |
. 2
β’ π» = (πΌ mHomP π
) |
2 | | mhpvscacl.p |
. 2
β’ π = (πΌ mPoly π
) |
3 | | eqid 2731 |
. 2
β’
(Baseβπ) =
(Baseβπ) |
4 | | eqid 2731 |
. 2
β’
(0gβπ
) = (0gβπ
) |
5 | | eqid 2731 |
. 2
β’ {β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} = {β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} |
6 | | mhpvscacl.i |
. 2
β’ (π β πΌ β π) |
7 | | mhpvscacl.r |
. 2
β’ (π β π
β Ring) |
8 | | mhpvscacl.n |
. 2
β’ (π β π β
β0) |
9 | 2 | mpllmod 21797 |
. . . 4
β’ ((πΌ β π β§ π
β Ring) β π β LMod) |
10 | 6, 7, 9 | syl2anc 583 |
. . 3
β’ (π β π β LMod) |
11 | | mhpvscacl.x |
. . . . 5
β’ (π β π β πΎ) |
12 | | mhpvscacl.k |
. . . . 5
β’ πΎ = (Baseβπ
) |
13 | 11, 12 | eleqtrdi 2842 |
. . . 4
β’ (π β π β (Baseβπ
)) |
14 | 2, 6, 7 | mplsca 21792 |
. . . . 5
β’ (π β π
= (Scalarβπ)) |
15 | 14 | fveq2d 6895 |
. . . 4
β’ (π β (Baseβπ
) =
(Baseβ(Scalarβπ))) |
16 | 13, 15 | eleqtrd 2834 |
. . 3
β’ (π β π β (Baseβ(Scalarβπ))) |
17 | | mhpvscacl.f |
. . . 4
β’ (π β πΉ β (π»βπ)) |
18 | 1, 2, 3, 6, 7, 8, 17 | mhpmpl 21907 |
. . 3
β’ (π β πΉ β (Baseβπ)) |
19 | | eqid 2731 |
. . . 4
β’
(Scalarβπ) =
(Scalarβπ) |
20 | | mhpvscacl.t |
. . . 4
β’ Β· = (
Β·π βπ) |
21 | | eqid 2731 |
. . . 4
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
22 | 3, 19, 20, 21 | lmodvscl 20633 |
. . 3
β’ ((π β LMod β§ π β
(Baseβ(Scalarβπ)) β§ πΉ β (Baseβπ)) β (π Β· πΉ) β (Baseβπ)) |
23 | 10, 16, 18, 22 | syl3anc 1370 |
. 2
β’ (π β (π Β· πΉ) β (Baseβπ)) |
24 | 2, 12, 3, 5, 23 | mplelf 21777 |
. . . 4
β’ (π β (π Β· πΉ):{β β (β0
βm πΌ)
β£ (β‘β β β) β Fin}βΆπΎ) |
25 | | eqid 2731 |
. . . . . 6
β’
(.rβπ
) = (.rβπ
) |
26 | 11 | adantr 480 |
. . . . . 6
β’ ((π β§ π β ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β (πΉ supp (0gβπ
)))) β π β πΎ) |
27 | 18 | adantr 480 |
. . . . . 6
β’ ((π β§ π β ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β (πΉ supp (0gβπ
)))) β πΉ β (Baseβπ)) |
28 | | eldifi 4126 |
. . . . . . 7
β’ (π β ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β (πΉ supp (0gβπ
))) β π β {β β (β0
βm πΌ)
β£ (β‘β β β) β
Fin}) |
29 | 28 | adantl 481 |
. . . . . 6
β’ ((π β§ π β ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β (πΉ supp (0gβπ
)))) β π β {β β (β0
βm πΌ)
β£ (β‘β β β) β
Fin}) |
30 | 2, 20, 12, 3, 25, 5, 26, 27, 29 | mplvscaval 21795 |
. . . . 5
β’ ((π β§ π β ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β (πΉ supp (0gβπ
)))) β ((π Β· πΉ)βπ) = (π(.rβπ
)(πΉβπ))) |
31 | 2, 12, 3, 5, 18 | mplelf 21777 |
. . . . . . 7
β’ (π β πΉ:{β β (β0
βm πΌ)
β£ (β‘β β β) β Fin}βΆπΎ) |
32 | | ssidd 4005 |
. . . . . . 7
β’ (π β (πΉ supp (0gβπ
)) β (πΉ supp (0gβπ
))) |
33 | | ovexd 7447 |
. . . . . . . 8
β’ (π β (β0
βm πΌ)
β V) |
34 | 5, 33 | rabexd 5333 |
. . . . . . 7
β’ (π β {β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β
V) |
35 | | fvexd 6906 |
. . . . . . 7
β’ (π β (0gβπ
) β V) |
36 | 31, 32, 34, 35 | suppssr 8185 |
. . . . . 6
β’ ((π β§ π β ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β (πΉ supp (0gβπ
)))) β (πΉβπ) = (0gβπ
)) |
37 | 36 | oveq2d 7428 |
. . . . 5
β’ ((π β§ π β ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β (πΉ supp (0gβπ
)))) β (π(.rβπ
)(πΉβπ)) = (π(.rβπ
)(0gβπ
))) |
38 | 12, 25, 4 | ringrz 20183 |
. . . . . . 7
β’ ((π
β Ring β§ π β πΎ) β (π(.rβπ
)(0gβπ
)) = (0gβπ
)) |
39 | 7, 11, 38 | syl2anc 583 |
. . . . . 6
β’ (π β (π(.rβπ
)(0gβπ
)) = (0gβπ
)) |
40 | 39 | adantr 480 |
. . . . 5
β’ ((π β§ π β ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β (πΉ supp (0gβπ
)))) β (π(.rβπ
)(0gβπ
)) = (0gβπ
)) |
41 | 30, 37, 40 | 3eqtrd 2775 |
. . . 4
β’ ((π β§ π β ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β (πΉ supp (0gβπ
)))) β ((π Β· πΉ)βπ) = (0gβπ
)) |
42 | 24, 41 | suppss 8183 |
. . 3
β’ (π β ((π Β· πΉ) supp (0gβπ
)) β (πΉ supp (0gβπ
))) |
43 | 1, 4, 5, 6, 7, 8, 17 | mhpdeg 21908 |
. . 3
β’ (π β (πΉ supp (0gβπ
)) β {π β {β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β£
((βfld βΎs β0)
Ξ£g π) = π}) |
44 | 42, 43 | sstrd 3992 |
. 2
β’ (π β ((π Β· πΉ) supp (0gβπ
)) β {π β {β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β£
((βfld βΎs β0)
Ξ£g π) = π}) |
45 | 1, 2, 3, 4, 5, 6, 7, 8, 23, 44 | ismhp2 21905 |
1
β’ (π β (π Β· πΉ) β (π»βπ)) |