MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpvscacl Structured version   Visualization version   GIF version

Theorem mhpvscacl 22017
Description: Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.)
Hypotheses
Ref Expression
mhpvscacl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpvscacl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpvscacl.t · = ( ·𝑠𝑃)
mhpvscacl.k 𝐾 = (Base‘𝑅)
mhpvscacl.r (𝜑𝑅 ∈ Ring)
mhpvscacl.x (𝜑𝑋𝐾)
mhpvscacl.f (𝜑𝐹 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpvscacl (𝜑 → (𝑋 · 𝐹) ∈ (𝐻𝑁))

Proof of Theorem mhpvscacl
Dummy variables 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpvscacl.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 mhpvscacl.p . 2 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2729 . 2 (Base‘𝑃) = (Base‘𝑃)
4 eqid 2729 . 2 (0g𝑅) = (0g𝑅)
5 eqid 2729 . 2 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpvscacl.f . . 3 (𝜑𝐹 ∈ (𝐻𝑁))
71, 6mhprcl 22006 . 2 (𝜑𝑁 ∈ ℕ0)
8 eqid 2729 . . 3 (Scalar‘𝑃) = (Scalar‘𝑃)
9 mhpvscacl.t . . 3 · = ( ·𝑠𝑃)
10 eqid 2729 . . 3 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
11 reldmmhp 22000 . . . . 5 Rel dom mHomP
1211, 1, 6elfvov1 7411 . . . 4 (𝜑𝐼 ∈ V)
13 mhpvscacl.r . . . 4 (𝜑𝑅 ∈ Ring)
142, 12, 13mpllmodd 21909 . . 3 (𝜑𝑃 ∈ LMod)
15 mhpvscacl.x . . . . 5 (𝜑𝑋𝐾)
16 mhpvscacl.k . . . . 5 𝐾 = (Base‘𝑅)
1715, 16eleqtrdi 2838 . . . 4 (𝜑𝑋 ∈ (Base‘𝑅))
182, 12, 13mplsca 21898 . . . . 5 (𝜑𝑅 = (Scalar‘𝑃))
1918fveq2d 6844 . . . 4 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
2017, 19eleqtrd 2830 . . 3 (𝜑𝑋 ∈ (Base‘(Scalar‘𝑃)))
211, 2, 3, 6mhpmpl 22007 . . 3 (𝜑𝐹 ∈ (Base‘𝑃))
223, 8, 9, 10, 14, 20, 21lmodvscld 20761 . 2 (𝜑 → (𝑋 · 𝐹) ∈ (Base‘𝑃))
232, 16, 3, 5, 22mplelf 21883 . . . 4 (𝜑 → (𝑋 · 𝐹):{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
24 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
2515adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → 𝑋𝐾)
2621adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → 𝐹 ∈ (Base‘𝑃))
27 eldifi 4090 . . . . . . 7 (𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅))) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
2827adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → 𝑘 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
292, 9, 16, 3, 24, 5, 25, 26, 28mplvscaval 21901 . . . . 5 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (𝑋(.r𝑅)(𝐹𝑘)))
302, 16, 3, 5, 21mplelf 21883 . . . . . . 7 (𝜑𝐹:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶𝐾)
31 ssidd 3967 . . . . . . 7 (𝜑 → (𝐹 supp (0g𝑅)) ⊆ (𝐹 supp (0g𝑅)))
32 fvexd 6855 . . . . . . 7 (𝜑 → (0g𝑅) ∈ V)
3330, 31, 6, 32suppssrg 8152 . . . . . 6 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → (𝐹𝑘) = (0g𝑅))
3433oveq2d 7385 . . . . 5 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → (𝑋(.r𝑅)(𝐹𝑘)) = (𝑋(.r𝑅)(0g𝑅)))
3516, 24, 4, 13, 15ringrzd 20181 . . . . . 6 (𝜑 → (𝑋(.r𝑅)(0g𝑅)) = (0g𝑅))
3635adantr 480 . . . . 5 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → (𝑋(.r𝑅)(0g𝑅)) = (0g𝑅))
3729, 34, 363eqtrd 2768 . . . 4 ((𝜑𝑘 ∈ ({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (0g𝑅))
3823, 37suppss 8150 . . 3 (𝜑 → ((𝑋 · 𝐹) supp (0g𝑅)) ⊆ (𝐹 supp (0g𝑅)))
391, 4, 5, 6mhpdeg 22008 . . 3 (𝜑 → (𝐹 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
4038, 39sstrd 3954 . 2 (𝜑 → ((𝑋 · 𝐹) supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
411, 2, 3, 4, 5, 7, 22, 40ismhp2 22004 1 (𝜑 → (𝑋 · 𝐹) ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  cdif 3908  ccnv 5630  cima 5634  cfv 6499  (class class class)co 7369   supp csupp 8116  m cmap 8776  Fincfn 8895  cn 12162  0cn0 12418  Basecbs 17155  s cress 17176  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378   Σg cgsu 17379  Ringcrg 20118  fldccnfld 21240   mPoly cmpl 21791   mHomP cmhp 21992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-prds 17386  df-pws 17388  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-lmod 20744  df-lss 20814  df-psr 21794  df-mpl 21796  df-mhp 21999
This theorem is referenced by:  mhplss  22018
  Copyright terms: Public domain W3C validator