| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpvscacl | Structured version Visualization version GIF version | ||
| Description: Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| mhpvscacl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpvscacl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpvscacl.t | ⊢ · = ( ·𝑠 ‘𝑃) |
| mhpvscacl.k | ⊢ 𝐾 = (Base‘𝑅) |
| mhpvscacl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mhpvscacl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| mhpvscacl.f | ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhpvscacl | ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpvscacl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpvscacl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2733 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 4 | eqid 2733 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2733 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | mhpvscacl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) | |
| 7 | 1, 6 | mhprcl 22077 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 8 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
| 9 | mhpvscacl.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 10 | eqid 2733 | . . 3 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
| 11 | reldmmhp 22071 | . . . . 5 ⊢ Rel dom mHomP | |
| 12 | 11, 1, 6 | elfvov1 7397 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 13 | mhpvscacl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 14 | 2, 12, 13 | mpllmodd 21970 | . . 3 ⊢ (𝜑 → 𝑃 ∈ LMod) |
| 15 | mhpvscacl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 16 | mhpvscacl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 17 | 15, 16 | eleqtrdi 2843 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| 18 | 2, 12, 13 | mplsca 21959 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
| 19 | 18 | fveq2d 6835 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 20 | 17, 19 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑃))) |
| 21 | 1, 2, 3, 6 | mhpmpl 22078 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘𝑃)) |
| 22 | 3, 8, 9, 10, 14, 20, 21 | lmodvscld 20821 | . 2 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (Base‘𝑃)) |
| 23 | 2, 16, 3, 5, 22 | mplelf 21944 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝐹):{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
| 24 | eqid 2733 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 25 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝑋 ∈ 𝐾) |
| 26 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝐹 ∈ (Base‘𝑃)) |
| 27 | eldifi 4080 | . . . . . . 7 ⊢ (𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅))) → 𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
| 28 | 27 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) |
| 29 | 2, 9, 16, 3, 24, 5, 25, 26, 28 | mplvscaval 21962 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (𝑋(.r‘𝑅)(𝐹‘𝑘))) |
| 30 | 2, 16, 3, 5, 21 | mplelf 21944 | . . . . . . 7 ⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
| 31 | ssidd 3954 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) | |
| 32 | fvexd 6846 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
| 33 | 30, 31, 6, 32 | suppssrg 8135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝐹‘𝑘) = (0g‘𝑅)) |
| 34 | 33 | oveq2d 7371 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝑋(.r‘𝑅)(𝐹‘𝑘)) = (𝑋(.r‘𝑅)(0g‘𝑅))) |
| 35 | 16, 24, 4, 13, 15 | ringrzd 20222 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 36 | 35 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 37 | 29, 34, 36 | 3eqtrd 2772 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (0g‘𝑅)) |
| 38 | 23, 37 | suppss 8133 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝐹) supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) |
| 39 | 1, 4, 5, 6 | mhpdeg 22079 | . . 3 ⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 40 | 38, 39 | sstrd 3941 | . 2 ⊢ (𝜑 → ((𝑋 · 𝐹) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 41 | 1, 2, 3, 4, 5, 7, 22, 40 | ismhp2 22075 | 1 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ∖ cdif 3895 ◡ccnv 5620 “ cima 5624 ‘cfv 6489 (class class class)co 7355 supp csupp 8099 ↑m cmap 8759 Fincfn 8879 ℕcn 12136 ℕ0cn0 12392 Basecbs 17127 ↾s cress 17148 .rcmulr 17169 Scalarcsca 17171 ·𝑠 cvsca 17172 0gc0g 17350 Σg cgsu 17351 Ringcrg 20159 ℂfldccnfld 21300 mPoly cmpl 21853 mHomP cmhp 22063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-prds 17358 df-pws 17360 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-lmod 20804 df-lss 20874 df-psr 21856 df-mpl 21858 df-mhp 22070 |
| This theorem is referenced by: mhplss 22089 |
| Copyright terms: Public domain | W3C validator |