| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpvscacl | Structured version Visualization version GIF version | ||
| Description: Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| mhpvscacl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpvscacl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpvscacl.t | ⊢ · = ( ·𝑠 ‘𝑃) |
| mhpvscacl.k | ⊢ 𝐾 = (Base‘𝑅) |
| mhpvscacl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mhpvscacl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| mhpvscacl.f | ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhpvscacl | ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpvscacl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpvscacl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2729 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 4 | eqid 2729 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2729 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | mhpvscacl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) | |
| 7 | 1, 6 | mhprcl 22006 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 8 | eqid 2729 | . . 3 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
| 9 | mhpvscacl.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 10 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
| 11 | reldmmhp 22000 | . . . . 5 ⊢ Rel dom mHomP | |
| 12 | 11, 1, 6 | elfvov1 7411 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 13 | mhpvscacl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 14 | 2, 12, 13 | mpllmodd 21909 | . . 3 ⊢ (𝜑 → 𝑃 ∈ LMod) |
| 15 | mhpvscacl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 16 | mhpvscacl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 17 | 15, 16 | eleqtrdi 2838 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| 18 | 2, 12, 13 | mplsca 21898 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
| 19 | 18 | fveq2d 6844 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 20 | 17, 19 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑃))) |
| 21 | 1, 2, 3, 6 | mhpmpl 22007 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘𝑃)) |
| 22 | 3, 8, 9, 10, 14, 20, 21 | lmodvscld 20761 | . 2 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (Base‘𝑃)) |
| 23 | 2, 16, 3, 5, 22 | mplelf 21883 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝐹):{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
| 24 | eqid 2729 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 25 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝑋 ∈ 𝐾) |
| 26 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝐹 ∈ (Base‘𝑃)) |
| 27 | eldifi 4090 | . . . . . . 7 ⊢ (𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅))) → 𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
| 28 | 27 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) |
| 29 | 2, 9, 16, 3, 24, 5, 25, 26, 28 | mplvscaval 21901 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (𝑋(.r‘𝑅)(𝐹‘𝑘))) |
| 30 | 2, 16, 3, 5, 21 | mplelf 21883 | . . . . . . 7 ⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
| 31 | ssidd 3967 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) | |
| 32 | fvexd 6855 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
| 33 | 30, 31, 6, 32 | suppssrg 8152 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝐹‘𝑘) = (0g‘𝑅)) |
| 34 | 33 | oveq2d 7385 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝑋(.r‘𝑅)(𝐹‘𝑘)) = (𝑋(.r‘𝑅)(0g‘𝑅))) |
| 35 | 16, 24, 4, 13, 15 | ringrzd 20181 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 36 | 35 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 37 | 29, 34, 36 | 3eqtrd 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (0g‘𝑅)) |
| 38 | 23, 37 | suppss 8150 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝐹) supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) |
| 39 | 1, 4, 5, 6 | mhpdeg 22008 | . . 3 ⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 40 | 38, 39 | sstrd 3954 | . 2 ⊢ (𝜑 → ((𝑋 · 𝐹) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 41 | 1, 2, 3, 4, 5, 7, 22, 40 | ismhp2 22004 | 1 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ∖ cdif 3908 ◡ccnv 5630 “ cima 5634 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 ↑m cmap 8776 Fincfn 8895 ℕcn 12162 ℕ0cn0 12418 Basecbs 17155 ↾s cress 17176 .rcmulr 17197 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17378 Σg cgsu 17379 Ringcrg 20118 ℂfldccnfld 21240 mPoly cmpl 21791 mHomP cmhp 21992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-pws 17388 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-lmod 20744 df-lss 20814 df-psr 21794 df-mpl 21796 df-mhp 21999 |
| This theorem is referenced by: mhplss 22018 |
| Copyright terms: Public domain | W3C validator |