![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhpvscacl | Structured version Visualization version GIF version |
Description: Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023.) Remove sethood hypothesis. (Revised by SN, 18-May-2025.) |
Ref | Expression |
---|---|
mhpvscacl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpvscacl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpvscacl.t | ⊢ · = ( ·𝑠 ‘𝑃) |
mhpvscacl.k | ⊢ 𝐾 = (Base‘𝑅) |
mhpvscacl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mhpvscacl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhpvscacl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
mhpvscacl.f | ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpvscacl | ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpvscacl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpvscacl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | eqid 2725 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
4 | eqid 2725 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2725 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | reldmmhp 22085 | . . 3 ⊢ Rel dom mHomP | |
7 | mhpvscacl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) | |
8 | 6, 1, 7 | elfvov1 7461 | . 2 ⊢ (𝜑 → 𝐼 ∈ V) |
9 | mhpvscacl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
10 | mhpvscacl.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
11 | 2, 8, 9 | mpllmodd 21986 | . . 3 ⊢ (𝜑 → 𝑃 ∈ LMod) |
12 | mhpvscacl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
13 | mhpvscacl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
14 | 12, 13 | eleqtrdi 2835 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
15 | 2, 8, 9 | mplsca 21975 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
16 | 15 | fveq2d 6900 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
17 | 14, 16 | eleqtrd 2827 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑃))) |
18 | 1, 2, 3, 8, 9, 10, 7 | mhpmpl 22091 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘𝑃)) |
19 | eqid 2725 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
20 | mhpvscacl.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
21 | eqid 2725 | . . . 4 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
22 | 3, 19, 20, 21 | lmodvscl 20773 | . . 3 ⊢ ((𝑃 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝐹 ∈ (Base‘𝑃)) → (𝑋 · 𝐹) ∈ (Base‘𝑃)) |
23 | 11, 17, 18, 22 | syl3anc 1368 | . 2 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (Base‘𝑃)) |
24 | 2, 13, 3, 5, 23 | mplelf 21960 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝐹):{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
25 | eqid 2725 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
26 | 12 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝑋 ∈ 𝐾) |
27 | 18 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝐹 ∈ (Base‘𝑃)) |
28 | eldifi 4123 | . . . . . . 7 ⊢ (𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅))) → 𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
29 | 28 | adantl 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) |
30 | 2, 20, 13, 3, 25, 5, 26, 27, 29 | mplvscaval 21978 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (𝑋(.r‘𝑅)(𝐹‘𝑘))) |
31 | 2, 13, 3, 5, 18 | mplelf 21960 | . . . . . . 7 ⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
32 | ssidd 4000 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) | |
33 | ovexd 7454 | . . . . . . . 8 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
34 | 5, 33 | rabexd 5336 | . . . . . . 7 ⊢ (𝜑 → {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V) |
35 | fvexd 6911 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
36 | 31, 32, 34, 35 | suppssr 8201 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝐹‘𝑘) = (0g‘𝑅)) |
37 | 36 | oveq2d 7435 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝑋(.r‘𝑅)(𝐹‘𝑘)) = (𝑋(.r‘𝑅)(0g‘𝑅))) |
38 | 13, 25, 4 | ringrz 20242 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
39 | 9, 12, 38 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
40 | 39 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
41 | 30, 37, 40 | 3eqtrd 2769 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (0g‘𝑅)) |
42 | 24, 41 | suppss 8199 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝐹) supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) |
43 | 1, 4, 5, 8, 9, 10, 7 | mhpdeg 22092 | . . 3 ⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
44 | 42, 43 | sstrd 3987 | . 2 ⊢ (𝜑 → ((𝑋 · 𝐹) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
45 | 1, 2, 3, 4, 5, 8, 9, 10, 23, 44 | ismhp2 22089 | 1 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 Vcvv 3461 ∖ cdif 3941 ◡ccnv 5677 “ cima 5681 ‘cfv 6549 (class class class)co 7419 supp csupp 8165 ↑m cmap 8845 Fincfn 8964 ℕcn 12245 ℕ0cn0 12505 Basecbs 17183 ↾s cress 17212 .rcmulr 17237 Scalarcsca 17239 ·𝑠 cvsca 17240 0gc0g 17424 Σg cgsu 17425 Ringcrg 20185 LModclmod 20755 ℂfldccnfld 21296 mPoly cmpl 21856 mHomP cmhp 22077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-sup 9467 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-hom 17260 df-cco 17261 df-0g 17426 df-prds 17432 df-pws 17434 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-sbg 18903 df-subg 19086 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-lmod 20757 df-lss 20828 df-psr 21859 df-mpl 21861 df-mhp 22084 |
This theorem is referenced by: mhplss 22102 |
Copyright terms: Public domain | W3C validator |