Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mhpvscacl | Structured version Visualization version GIF version |
Description: Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023.) |
Ref | Expression |
---|---|
mhpvscacl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpvscacl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpvscacl.t | ⊢ · = ( ·𝑠 ‘𝑃) |
mhpvscacl.k | ⊢ 𝐾 = (Base‘𝑅) |
mhpvscacl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpvscacl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mhpvscacl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhpvscacl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
mhpvscacl.f | ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpvscacl | ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpvscacl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpvscacl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | eqid 2738 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
4 | eqid 2738 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2738 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | mhpvscacl.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | mhpvscacl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
8 | mhpvscacl.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | 2 | mpllmod 21133 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ LMod) |
10 | 6, 7, 9 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝑃 ∈ LMod) |
11 | mhpvscacl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
12 | mhpvscacl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
13 | 11, 12 | eleqtrdi 2849 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
14 | 2, 6, 7 | mplsca 21127 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
15 | 14 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
16 | 13, 15 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑃))) |
17 | mhpvscacl.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) | |
18 | 1, 2, 3, 6, 7, 8, 17 | mhpmpl 21244 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘𝑃)) |
19 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
20 | mhpvscacl.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
21 | eqid 2738 | . . . 4 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
22 | 3, 19, 20, 21 | lmodvscl 20055 | . . 3 ⊢ ((𝑃 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝐹 ∈ (Base‘𝑃)) → (𝑋 · 𝐹) ∈ (Base‘𝑃)) |
23 | 10, 16, 18, 22 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (Base‘𝑃)) |
24 | 2, 12, 3, 5, 23 | mplelf 21114 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝐹):{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
25 | eqid 2738 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
26 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝑋 ∈ 𝐾) |
27 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝐹 ∈ (Base‘𝑃)) |
28 | eldifi 4057 | . . . . . . 7 ⊢ (𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅))) → 𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
29 | 28 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) |
30 | 2, 20, 12, 3, 25, 5, 26, 27, 29 | mplvscaval 21130 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (𝑋(.r‘𝑅)(𝐹‘𝑘))) |
31 | 2, 12, 3, 5, 18 | mplelf 21114 | . . . . . . 7 ⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
32 | ssidd 3940 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) | |
33 | ovexd 7290 | . . . . . . . 8 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
34 | 5, 33 | rabexd 5252 | . . . . . . 7 ⊢ (𝜑 → {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V) |
35 | fvexd 6771 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
36 | 31, 32, 34, 35 | suppssr 7983 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝐹‘𝑘) = (0g‘𝑅)) |
37 | 36 | oveq2d 7271 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝑋(.r‘𝑅)(𝐹‘𝑘)) = (𝑋(.r‘𝑅)(0g‘𝑅))) |
38 | 12, 25, 4 | ringrz 19742 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
39 | 7, 11, 38 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
40 | 39 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
41 | 30, 37, 40 | 3eqtrd 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (0g‘𝑅)) |
42 | 24, 41 | suppss 7981 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝐹) supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) |
43 | 1, 4, 5, 6, 7, 8, 17 | mhpdeg 21245 | . . 3 ⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
44 | 42, 43 | sstrd 3927 | . 2 ⊢ (𝜑 → ((𝑋 · 𝐹) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
45 | 1, 2, 3, 4, 5, 6, 7, 8, 23, 44 | ismhp2 21242 | 1 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ∖ cdif 3880 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 ↑m cmap 8573 Fincfn 8691 ℕcn 11903 ℕ0cn0 12163 Basecbs 16840 ↾s cress 16867 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 Σg cgsu 17068 Ringcrg 19698 LModclmod 20038 ℂfldccnfld 20510 mPoly cmpl 21019 mHomP cmhp 21229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 df-psr 21022 df-mpl 21024 df-mhp 21233 |
This theorem is referenced by: mhplss 21255 |
Copyright terms: Public domain | W3C validator |