| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpvscacl | Structured version Visualization version GIF version | ||
| Description: Homogeneous polynomials are closed under scalar multiplication. (Contributed by SN, 25-Sep-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| mhpvscacl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpvscacl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpvscacl.t | ⊢ · = ( ·𝑠 ‘𝑃) |
| mhpvscacl.k | ⊢ 𝐾 = (Base‘𝑅) |
| mhpvscacl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mhpvscacl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| mhpvscacl.f | ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhpvscacl | ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpvscacl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpvscacl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2731 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 4 | eqid 2731 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2731 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | mhpvscacl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) | |
| 7 | 1, 6 | mhprcl 22053 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 8 | eqid 2731 | . . 3 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
| 9 | mhpvscacl.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑃) | |
| 10 | eqid 2731 | . . 3 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
| 11 | reldmmhp 22047 | . . . . 5 ⊢ Rel dom mHomP | |
| 12 | 11, 1, 6 | elfvov1 7383 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 13 | mhpvscacl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 14 | 2, 12, 13 | mpllmodd 21956 | . . 3 ⊢ (𝜑 → 𝑃 ∈ LMod) |
| 15 | mhpvscacl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 16 | mhpvscacl.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 17 | 15, 16 | eleqtrdi 2841 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
| 18 | 2, 12, 13 | mplsca 21945 | . . . . 5 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
| 19 | 18 | fveq2d 6821 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
| 20 | 17, 19 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑃))) |
| 21 | 1, 2, 3, 6 | mhpmpl 22054 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘𝑃)) |
| 22 | 3, 8, 9, 10, 14, 20, 21 | lmodvscld 20807 | . 2 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (Base‘𝑃)) |
| 23 | 2, 16, 3, 5, 22 | mplelf 21930 | . . . 4 ⊢ (𝜑 → (𝑋 · 𝐹):{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
| 24 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 25 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝑋 ∈ 𝐾) |
| 26 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝐹 ∈ (Base‘𝑃)) |
| 27 | eldifi 4076 | . . . . . . 7 ⊢ (𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅))) → 𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) | |
| 28 | 27 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → 𝑘 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}) |
| 29 | 2, 9, 16, 3, 24, 5, 25, 26, 28 | mplvscaval 21948 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (𝑋(.r‘𝑅)(𝐹‘𝑘))) |
| 30 | 2, 16, 3, 5, 21 | mplelf 21930 | . . . . . . 7 ⊢ (𝜑 → 𝐹:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶𝐾) |
| 31 | ssidd 3953 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) | |
| 32 | fvexd 6832 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑅) ∈ V) | |
| 33 | 30, 31, 6, 32 | suppssrg 8121 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝐹‘𝑘) = (0g‘𝑅)) |
| 34 | 33 | oveq2d 7357 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝑋(.r‘𝑅)(𝐹‘𝑘)) = (𝑋(.r‘𝑅)(0g‘𝑅))) |
| 35 | 16, 24, 4, 13, 15 | ringrzd 20209 | . . . . . 6 ⊢ (𝜑 → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 36 | 35 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → (𝑋(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 37 | 29, 34, 36 | 3eqtrd 2770 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ({ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∖ (𝐹 supp (0g‘𝑅)))) → ((𝑋 · 𝐹)‘𝑘) = (0g‘𝑅)) |
| 38 | 23, 37 | suppss 8119 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝐹) supp (0g‘𝑅)) ⊆ (𝐹 supp (0g‘𝑅))) |
| 39 | 1, 4, 5, 6 | mhpdeg 22055 | . . 3 ⊢ (𝜑 → (𝐹 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 40 | 38, 39 | sstrd 3940 | . 2 ⊢ (𝜑 → ((𝑋 · 𝐹) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 41 | 1, 2, 3, 4, 5, 7, 22, 40 | ismhp2 22051 | 1 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ (𝐻‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∖ cdif 3894 ◡ccnv 5610 “ cima 5614 ‘cfv 6476 (class class class)co 7341 supp csupp 8085 ↑m cmap 8745 Fincfn 8864 ℕcn 12120 ℕ0cn0 12376 Basecbs 17115 ↾s cress 17136 .rcmulr 17157 Scalarcsca 17159 ·𝑠 cvsca 17160 0gc0g 17338 Σg cgsu 17339 Ringcrg 20146 ℂfldccnfld 21286 mPoly cmpl 21838 mHomP cmhp 22039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-prds 17346 df-pws 17348 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-lmod 20790 df-lss 20860 df-psr 21841 df-mpl 21843 df-mhp 22046 |
| This theorem is referenced by: mhplss 22065 |
| Copyright terms: Public domain | W3C validator |