Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mhpaddcl | Structured version Visualization version GIF version |
Description: Homogeneous polynomials are closed under addition. (Contributed by SN, 26-Aug-2023.) |
Ref | Expression |
---|---|
mhpaddcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpaddcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpaddcl.a | ⊢ + = (+g‘𝑃) |
mhpaddcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpaddcl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
mhpaddcl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhpaddcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
mhpaddcl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpaddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐻‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpaddcl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpaddcl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | eqid 2738 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
4 | eqid 2738 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2738 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | mhpaddcl.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | mhpaddcl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
8 | mhpaddcl.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | 2 | mplgrp 21222 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
10 | 6, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
11 | mhpaddcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
12 | 1, 2, 3, 6, 7, 8, 11 | mhpmpl 21334 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
13 | mhpaddcl.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐻‘𝑁)) | |
14 | 1, 2, 3, 6, 7, 8, 13 | mhpmpl 21334 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑃)) |
15 | mhpaddcl.a | . . . 4 ⊢ + = (+g‘𝑃) | |
16 | 3, 15 | grpcl 18585 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ 𝑌 ∈ (Base‘𝑃)) → (𝑋 + 𝑌) ∈ (Base‘𝑃)) |
17 | 10, 12, 14, 16 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (Base‘𝑃)) |
18 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
19 | 2, 3, 18, 15, 12, 14 | mpladd 21213 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘f (+g‘𝑅)𝑌)) |
20 | 19 | oveq1d 7290 | . . . 4 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) = ((𝑋 ∘f (+g‘𝑅)𝑌) supp (0g‘𝑅))) |
21 | ovexd 7310 | . . . . . 6 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
22 | 5, 21 | rabexd 5257 | . . . . 5 ⊢ (𝜑 → {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V) |
23 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
24 | 23, 4 | grpidcl 18607 | . . . . . 6 ⊢ (𝑅 ∈ Grp → (0g‘𝑅) ∈ (Base‘𝑅)) |
25 | 7, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
26 | 2, 23, 3, 5, 12 | mplelf 21204 | . . . . 5 ⊢ (𝜑 → 𝑋:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
27 | 2, 23, 3, 5, 14 | mplelf 21204 | . . . . 5 ⊢ (𝜑 → 𝑌:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
28 | 23, 18, 4 | grplid 18609 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ (0g‘𝑅) ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
29 | 7, 25, 28 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
30 | 22, 25, 26, 27, 29 | suppofssd 8019 | . . . 4 ⊢ (𝜑 → ((𝑋 ∘f (+g‘𝑅)𝑌) supp (0g‘𝑅)) ⊆ ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅)))) |
31 | 20, 30 | eqsstrd 3959 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) ⊆ ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅)))) |
32 | 1, 4, 5, 6, 7, 8, 11 | mhpdeg 21335 | . . . 4 ⊢ (𝜑 → (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
33 | 1, 4, 5, 6, 7, 8, 13 | mhpdeg 21335 | . . . 4 ⊢ (𝜑 → (𝑌 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
34 | 32, 33 | unssd 4120 | . . 3 ⊢ (𝜑 → ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅))) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
35 | 31, 34 | sstrd 3931 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 17, 35 | ismhp2 21332 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐻‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ∪ cun 3885 ◡ccnv 5588 “ cima 5592 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 supp csupp 7977 ↑m cmap 8615 Fincfn 8733 ℕcn 11973 ℕ0cn0 12233 Basecbs 16912 ↾s cress 16941 +gcplusg 16962 0gc0g 17150 Σg cgsu 17151 Grpcgrp 18577 ℂfldccnfld 20597 mPoly cmpl 21109 mHomP cmhp 21319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-tset 16981 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-subg 18752 df-psr 21112 df-mpl 21114 df-mhp 21323 |
This theorem is referenced by: mhpsubg 21343 mhpind 40283 |
Copyright terms: Public domain | W3C validator |