![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhpaddcl | Structured version Visualization version GIF version |
Description: Homogeneous polynomials are closed under addition. (Contributed by SN, 26-Aug-2023.) Remove sethood hypothesis. (Revised by SN, 18-May-2025.) |
Ref | Expression |
---|---|
mhpaddcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpaddcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpaddcl.a | ⊢ + = (+g‘𝑃) |
mhpaddcl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
mhpaddcl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhpaddcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
mhpaddcl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpaddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐻‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpaddcl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpaddcl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | eqid 2726 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
4 | eqid 2726 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2726 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | reldmmhp 22132 | . . 3 ⊢ Rel dom mHomP | |
7 | mhpaddcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
8 | 6, 1, 7 | elfvov1 7466 | . 2 ⊢ (𝜑 → 𝐼 ∈ V) |
9 | mhpaddcl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
10 | mhpaddcl.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
11 | 2 | mplgrp 22026 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
12 | 8, 9, 11 | syl2anc 582 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
13 | 1, 2, 3, 8, 9, 10, 7 | mhpmpl 22138 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
14 | mhpaddcl.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐻‘𝑁)) | |
15 | 1, 2, 3, 8, 9, 10, 14 | mhpmpl 22138 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑃)) |
16 | mhpaddcl.a | . . . 4 ⊢ + = (+g‘𝑃) | |
17 | 3, 16 | grpcl 18936 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ 𝑌 ∈ (Base‘𝑃)) → (𝑋 + 𝑌) ∈ (Base‘𝑃)) |
18 | 12, 13, 15, 17 | syl3anc 1368 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (Base‘𝑃)) |
19 | eqid 2726 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
20 | 2, 3, 19, 16, 13, 15 | mpladd 22018 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘f (+g‘𝑅)𝑌)) |
21 | 20 | oveq1d 7439 | . . . 4 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) = ((𝑋 ∘f (+g‘𝑅)𝑌) supp (0g‘𝑅))) |
22 | ovexd 7459 | . . . . . 6 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
23 | 5, 22 | rabexd 5340 | . . . . 5 ⊢ (𝜑 → {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V) |
24 | eqid 2726 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
25 | 24, 4 | grpidcl 18960 | . . . . . 6 ⊢ (𝑅 ∈ Grp → (0g‘𝑅) ∈ (Base‘𝑅)) |
26 | 9, 25 | syl 17 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
27 | 2, 24, 3, 5, 13 | mplelf 22007 | . . . . 5 ⊢ (𝜑 → 𝑋:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
28 | 2, 24, 3, 5, 15 | mplelf 22007 | . . . . 5 ⊢ (𝜑 → 𝑌:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
29 | 24, 19, 4 | grplid 18962 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ (0g‘𝑅) ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
30 | 9, 26, 29 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
31 | 23, 26, 27, 28, 30 | suppofssd 8218 | . . . 4 ⊢ (𝜑 → ((𝑋 ∘f (+g‘𝑅)𝑌) supp (0g‘𝑅)) ⊆ ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅)))) |
32 | 21, 31 | eqsstrd 4018 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) ⊆ ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅)))) |
33 | 1, 4, 5, 8, 9, 10, 7 | mhpdeg 22139 | . . . 4 ⊢ (𝜑 → (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
34 | 1, 4, 5, 8, 9, 10, 14 | mhpdeg 22139 | . . . 4 ⊢ (𝜑 → (𝑌 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
35 | 33, 34 | unssd 4187 | . . 3 ⊢ (𝜑 → ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅))) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
36 | 32, 35 | sstrd 3990 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
37 | 1, 2, 3, 4, 5, 8, 9, 10, 18, 36 | ismhp2 22136 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐻‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3419 Vcvv 3462 ∪ cun 3945 ◡ccnv 5681 “ cima 5685 ‘cfv 6554 (class class class)co 7424 ∘f cof 7688 supp csupp 8174 ↑m cmap 8855 Fincfn 8974 ℕcn 12264 ℕ0cn0 12524 Basecbs 17213 ↾s cress 17242 +gcplusg 17266 0gc0g 17454 Σg cgsu 17455 Grpcgrp 18928 ℂfldccnfld 21343 mPoly cmpl 21903 mHomP cmhp 22124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-ixp 8927 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-sup 9485 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-fz 13539 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-hom 17290 df-cco 17291 df-0g 17456 df-prds 17462 df-pws 17464 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-minusg 18932 df-subg 19117 df-psr 21906 df-mpl 21908 df-mhp 22131 |
This theorem is referenced by: mhpsubg 22147 mhpind 42066 |
Copyright terms: Public domain | W3C validator |