Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mhpaddcl | Structured version Visualization version GIF version |
Description: Homogeneous polynomials are closed under addition. (Contributed by SN, 26-Aug-2023.) |
Ref | Expression |
---|---|
mhpaddcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
mhpaddcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mhpaddcl.a | ⊢ + = (+g‘𝑃) |
mhpaddcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhpaddcl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
mhpaddcl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhpaddcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
mhpaddcl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐻‘𝑁)) |
Ref | Expression |
---|---|
mhpaddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐻‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhpaddcl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
2 | mhpaddcl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | eqid 2736 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
4 | eqid 2736 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
5 | eqid 2736 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | mhpaddcl.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | mhpaddcl.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
8 | mhpaddcl.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
9 | 2 | mplgrp 21329 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
10 | 6, 7, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
11 | mhpaddcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
12 | 1, 2, 3, 6, 7, 8, 11 | mhpmpl 21441 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
13 | mhpaddcl.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐻‘𝑁)) | |
14 | 1, 2, 3, 6, 7, 8, 13 | mhpmpl 21441 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑃)) |
15 | mhpaddcl.a | . . . 4 ⊢ + = (+g‘𝑃) | |
16 | 3, 15 | grpcl 18682 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ 𝑌 ∈ (Base‘𝑃)) → (𝑋 + 𝑌) ∈ (Base‘𝑃)) |
17 | 10, 12, 14, 16 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (Base‘𝑃)) |
18 | eqid 2736 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
19 | 2, 3, 18, 15, 12, 14 | mpladd 21320 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘f (+g‘𝑅)𝑌)) |
20 | 19 | oveq1d 7353 | . . . 4 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) = ((𝑋 ∘f (+g‘𝑅)𝑌) supp (0g‘𝑅))) |
21 | ovexd 7373 | . . . . . 6 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
22 | 5, 21 | rabexd 5278 | . . . . 5 ⊢ (𝜑 → {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V) |
23 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
24 | 23, 4 | grpidcl 18704 | . . . . . 6 ⊢ (𝑅 ∈ Grp → (0g‘𝑅) ∈ (Base‘𝑅)) |
25 | 7, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
26 | 2, 23, 3, 5, 12 | mplelf 21311 | . . . . 5 ⊢ (𝜑 → 𝑋:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
27 | 2, 23, 3, 5, 14 | mplelf 21311 | . . . . 5 ⊢ (𝜑 → 𝑌:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
28 | 23, 18, 4 | grplid 18706 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ (0g‘𝑅) ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
29 | 7, 25, 28 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
30 | 22, 25, 26, 27, 29 | suppofssd 8090 | . . . 4 ⊢ (𝜑 → ((𝑋 ∘f (+g‘𝑅)𝑌) supp (0g‘𝑅)) ⊆ ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅)))) |
31 | 20, 30 | eqsstrd 3970 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) ⊆ ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅)))) |
32 | 1, 4, 5, 6, 7, 8, 11 | mhpdeg 21442 | . . . 4 ⊢ (𝜑 → (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
33 | 1, 4, 5, 6, 7, 8, 13 | mhpdeg 21442 | . . . 4 ⊢ (𝜑 → (𝑌 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
34 | 32, 33 | unssd 4134 | . . 3 ⊢ (𝜑 → ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅))) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
35 | 31, 34 | sstrd 3942 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 17, 35 | ismhp2 21439 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐻‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3403 Vcvv 3441 ∪ cun 3896 ◡ccnv 5620 “ cima 5624 ‘cfv 6480 (class class class)co 7338 ∘f cof 7594 supp csupp 8048 ↑m cmap 8687 Fincfn 8805 ℕcn 12075 ℕ0cn0 12335 Basecbs 17010 ↾s cress 17039 +gcplusg 17060 0gc0g 17248 Σg cgsu 17249 Grpcgrp 18674 ℂfldccnfld 20704 mPoly cmpl 21216 mHomP cmhp 21426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-om 7782 df-1st 7900 df-2nd 7901 df-supp 8049 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-map 8689 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-fsupp 9228 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-uz 12685 df-fz 13342 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-tset 17079 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-minusg 18678 df-subg 18849 df-psr 21219 df-mpl 21221 df-mhp 21430 |
This theorem is referenced by: mhpsubg 21450 mhpind 40594 |
Copyright terms: Public domain | W3C validator |