| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpaddcl | Structured version Visualization version GIF version | ||
| Description: Homogeneous polynomials are closed under addition. (Contributed by SN, 26-Aug-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| mhpaddcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpaddcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpaddcl.a | ⊢ + = (+g‘𝑃) |
| mhpaddcl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| mhpaddcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| mhpaddcl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhpaddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐻‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpaddcl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpaddcl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2729 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 4 | eqid 2729 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2729 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | mhpaddcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
| 7 | 1, 6 | mhprcl 22030 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 8 | mhpaddcl.a | . . 3 ⊢ + = (+g‘𝑃) | |
| 9 | reldmmhp 22024 | . . . . 5 ⊢ Rel dom mHomP | |
| 10 | 9, 1, 6 | elfvov1 7429 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 11 | mhpaddcl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 12 | 2 | mplgrp 21926 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
| 13 | 10, 11, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 14 | 1, 2, 3, 6 | mhpmpl 22031 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
| 15 | mhpaddcl.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐻‘𝑁)) | |
| 16 | 1, 2, 3, 15 | mhpmpl 22031 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑃)) |
| 17 | 3, 8, 13, 14, 16 | grpcld 18879 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (Base‘𝑃)) |
| 18 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 19 | 2, 3, 18, 8, 14, 16 | mpladd 21918 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘f (+g‘𝑅)𝑌)) |
| 20 | 19 | oveq1d 7402 | . . . 4 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) = ((𝑋 ∘f (+g‘𝑅)𝑌) supp (0g‘𝑅))) |
| 21 | ovexd 7422 | . . . . . 6 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
| 22 | 5, 21 | rabexd 5295 | . . . . 5 ⊢ (𝜑 → {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V) |
| 23 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 24 | 23, 4 | grpidcl 18897 | . . . . . 6 ⊢ (𝑅 ∈ Grp → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 25 | 11, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 26 | 2, 23, 3, 5, 14 | mplelf 21907 | . . . . 5 ⊢ (𝜑 → 𝑋:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 27 | 2, 23, 3, 5, 16 | mplelf 21907 | . . . . 5 ⊢ (𝜑 → 𝑌:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 28 | 23, 18, 4, 11, 25 | grplidd 18901 | . . . . 5 ⊢ (𝜑 → ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 29 | 22, 25, 26, 27, 28 | suppofssd 8182 | . . . 4 ⊢ (𝜑 → ((𝑋 ∘f (+g‘𝑅)𝑌) supp (0g‘𝑅)) ⊆ ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅)))) |
| 30 | 20, 29 | eqsstrd 3981 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) ⊆ ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅)))) |
| 31 | 1, 4, 5, 6 | mhpdeg 22032 | . . . 4 ⊢ (𝜑 → (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 32 | 1, 4, 5, 15 | mhpdeg 22032 | . . . 4 ⊢ (𝜑 → (𝑌 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 33 | 31, 32 | unssd 4155 | . . 3 ⊢ (𝜑 → ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅))) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 34 | 30, 33 | sstrd 3957 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 35 | 1, 2, 3, 4, 5, 7, 17, 34 | ismhp2 22028 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐻‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ∪ cun 3912 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 supp csupp 8139 ↑m cmap 8799 Fincfn 8918 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 0gc0g 17402 Σg cgsu 17403 Grpcgrp 18865 ℂfldccnfld 21264 mPoly cmpl 21815 mHomP cmhp 22016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-psr 21818 df-mpl 21820 df-mhp 22023 |
| This theorem is referenced by: mhpsubg 22040 mhpind 42582 |
| Copyright terms: Public domain | W3C validator |