MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpaddcl Structured version   Visualization version   GIF version

Theorem mhpaddcl 21448
Description: Homogeneous polynomials are closed under addition. (Contributed by SN, 26-Aug-2023.)
Hypotheses
Ref Expression
mhpaddcl.h 𝐻 = (𝐼 mHomP 𝑅)
mhpaddcl.p 𝑃 = (𝐼 mPoly 𝑅)
mhpaddcl.a + = (+g𝑃)
mhpaddcl.i (𝜑𝐼𝑉)
mhpaddcl.r (𝜑𝑅 ∈ Grp)
mhpaddcl.n (𝜑𝑁 ∈ ℕ0)
mhpaddcl.x (𝜑𝑋 ∈ (𝐻𝑁))
mhpaddcl.y (𝜑𝑌 ∈ (𝐻𝑁))
Assertion
Ref Expression
mhpaddcl (𝜑 → (𝑋 + 𝑌) ∈ (𝐻𝑁))

Proof of Theorem mhpaddcl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpaddcl.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 mhpaddcl.p . 2 𝑃 = (𝐼 mPoly 𝑅)
3 eqid 2736 . 2 (Base‘𝑃) = (Base‘𝑃)
4 eqid 2736 . 2 (0g𝑅) = (0g𝑅)
5 eqid 2736 . 2 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 mhpaddcl.i . 2 (𝜑𝐼𝑉)
7 mhpaddcl.r . 2 (𝜑𝑅 ∈ Grp)
8 mhpaddcl.n . 2 (𝜑𝑁 ∈ ℕ0)
92mplgrp 21329 . . . 4 ((𝐼𝑉𝑅 ∈ Grp) → 𝑃 ∈ Grp)
106, 7, 9syl2anc 584 . . 3 (𝜑𝑃 ∈ Grp)
11 mhpaddcl.x . . . 4 (𝜑𝑋 ∈ (𝐻𝑁))
121, 2, 3, 6, 7, 8, 11mhpmpl 21441 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
13 mhpaddcl.y . . . 4 (𝜑𝑌 ∈ (𝐻𝑁))
141, 2, 3, 6, 7, 8, 13mhpmpl 21441 . . 3 (𝜑𝑌 ∈ (Base‘𝑃))
15 mhpaddcl.a . . . 4 + = (+g𝑃)
163, 15grpcl 18682 . . 3 ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ 𝑌 ∈ (Base‘𝑃)) → (𝑋 + 𝑌) ∈ (Base‘𝑃))
1710, 12, 14, 16syl3anc 1370 . 2 (𝜑 → (𝑋 + 𝑌) ∈ (Base‘𝑃))
18 eqid 2736 . . . . . 6 (+g𝑅) = (+g𝑅)
192, 3, 18, 15, 12, 14mpladd 21320 . . . . 5 (𝜑 → (𝑋 + 𝑌) = (𝑋f (+g𝑅)𝑌))
2019oveq1d 7353 . . . 4 (𝜑 → ((𝑋 + 𝑌) supp (0g𝑅)) = ((𝑋f (+g𝑅)𝑌) supp (0g𝑅)))
21 ovexd 7373 . . . . . 6 (𝜑 → (ℕ0m 𝐼) ∈ V)
225, 21rabexd 5278 . . . . 5 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
23 eqid 2736 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
2423, 4grpidcl 18704 . . . . . 6 (𝑅 ∈ Grp → (0g𝑅) ∈ (Base‘𝑅))
257, 24syl 17 . . . . 5 (𝜑 → (0g𝑅) ∈ (Base‘𝑅))
262, 23, 3, 5, 12mplelf 21311 . . . . 5 (𝜑𝑋:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
272, 23, 3, 5, 14mplelf 21311 . . . . 5 (𝜑𝑌:{ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2823, 18, 4grplid 18706 . . . . . 6 ((𝑅 ∈ Grp ∧ (0g𝑅) ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
297, 25, 28syl2anc 584 . . . . 5 (𝜑 → ((0g𝑅)(+g𝑅)(0g𝑅)) = (0g𝑅))
3022, 25, 26, 27, 29suppofssd 8090 . . . 4 (𝜑 → ((𝑋f (+g𝑅)𝑌) supp (0g𝑅)) ⊆ ((𝑋 supp (0g𝑅)) ∪ (𝑌 supp (0g𝑅))))
3120, 30eqsstrd 3970 . . 3 (𝜑 → ((𝑋 + 𝑌) supp (0g𝑅)) ⊆ ((𝑋 supp (0g𝑅)) ∪ (𝑌 supp (0g𝑅))))
321, 4, 5, 6, 7, 8, 11mhpdeg 21442 . . . 4 (𝜑 → (𝑋 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
331, 4, 5, 6, 7, 8, 13mhpdeg 21442 . . . 4 (𝜑 → (𝑌 supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
3432, 33unssd 4134 . . 3 (𝜑 → ((𝑋 supp (0g𝑅)) ∪ (𝑌 supp (0g𝑅))) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
3531, 34sstrd 3942 . 2 (𝜑 → ((𝑋 + 𝑌) supp (0g𝑅)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑁})
361, 2, 3, 4, 5, 6, 7, 8, 17, 35ismhp2 21439 1 (𝜑 → (𝑋 + 𝑌) ∈ (𝐻𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  {crab 3403  Vcvv 3441  cun 3896  ccnv 5620  cima 5624  cfv 6480  (class class class)co 7338  f cof 7594   supp csupp 8048  m cmap 8687  Fincfn 8805  cn 12075  0cn0 12335  Basecbs 17010  s cress 17039  +gcplusg 17060  0gc0g 17248   Σg cgsu 17249  Grpcgrp 18674  fldccnfld 20704   mPoly cmpl 21216   mHomP cmhp 21426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-of 7596  df-om 7782  df-1st 7900  df-2nd 7901  df-supp 8049  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-1o 8368  df-er 8570  df-map 8689  df-en 8806  df-dom 8807  df-sdom 8808  df-fin 8809  df-fsupp 9228  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-nn 12076  df-2 12138  df-3 12139  df-4 12140  df-5 12141  df-6 12142  df-7 12143  df-8 12144  df-9 12145  df-n0 12336  df-z 12422  df-uz 12685  df-fz 13342  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-sca 17076  df-vsca 17077  df-tset 17079  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-grp 18677  df-minusg 18678  df-subg 18849  df-psr 21219  df-mpl 21221  df-mhp 21430
This theorem is referenced by:  mhpsubg  21450  mhpind  40594
  Copyright terms: Public domain W3C validator