| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhpaddcl | Structured version Visualization version GIF version | ||
| Description: Homogeneous polynomials are closed under addition. (Contributed by SN, 26-Aug-2023.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.) |
| Ref | Expression |
|---|---|
| mhpaddcl.h | ⊢ 𝐻 = (𝐼 mHomP 𝑅) |
| mhpaddcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mhpaddcl.a | ⊢ + = (+g‘𝑃) |
| mhpaddcl.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
| mhpaddcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| mhpaddcl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐻‘𝑁)) |
| Ref | Expression |
|---|---|
| mhpaddcl | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐻‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhpaddcl.h | . 2 ⊢ 𝐻 = (𝐼 mHomP 𝑅) | |
| 2 | mhpaddcl.p | . 2 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2737 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 4 | eqid 2737 | . 2 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | eqid 2737 | . 2 ⊢ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | mhpaddcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
| 7 | 1, 6 | mhprcl 22147 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 8 | mhpaddcl.a | . . 3 ⊢ + = (+g‘𝑃) | |
| 9 | reldmmhp 22141 | . . . . 5 ⊢ Rel dom mHomP | |
| 10 | 9, 1, 6 | elfvov1 7473 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 11 | mhpaddcl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 12 | 2 | mplgrp 22037 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) |
| 13 | 10, 11, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 14 | 1, 2, 3, 6 | mhpmpl 22148 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
| 15 | mhpaddcl.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝐻‘𝑁)) | |
| 16 | 1, 2, 3, 15 | mhpmpl 22148 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑃)) |
| 17 | 3, 8, 13, 14, 16 | grpcld 18965 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (Base‘𝑃)) |
| 18 | eqid 2737 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 19 | 2, 3, 18, 8, 14, 16 | mpladd 22029 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘f (+g‘𝑅)𝑌)) |
| 20 | 19 | oveq1d 7446 | . . . 4 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) = ((𝑋 ∘f (+g‘𝑅)𝑌) supp (0g‘𝑅))) |
| 21 | ovexd 7466 | . . . . . 6 ⊢ (𝜑 → (ℕ0 ↑m 𝐼) ∈ V) | |
| 22 | 5, 21 | rabexd 5340 | . . . . 5 ⊢ (𝜑 → {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈ V) |
| 23 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 24 | 23, 4 | grpidcl 18983 | . . . . . 6 ⊢ (𝑅 ∈ Grp → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 25 | 11, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 26 | 2, 23, 3, 5, 14 | mplelf 22018 | . . . . 5 ⊢ (𝜑 → 𝑋:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 27 | 2, 23, 3, 5, 16 | mplelf 22018 | . . . . 5 ⊢ (𝜑 → 𝑌:{ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin}⟶(Base‘𝑅)) |
| 28 | 23, 18, 4, 11, 25 | grplidd 18987 | . . . . 5 ⊢ (𝜑 → ((0g‘𝑅)(+g‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 29 | 22, 25, 26, 27, 28 | suppofssd 8228 | . . . 4 ⊢ (𝜑 → ((𝑋 ∘f (+g‘𝑅)𝑌) supp (0g‘𝑅)) ⊆ ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅)))) |
| 30 | 20, 29 | eqsstrd 4018 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) ⊆ ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅)))) |
| 31 | 1, 4, 5, 6 | mhpdeg 22149 | . . . 4 ⊢ (𝜑 → (𝑋 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 32 | 1, 4, 5, 15 | mhpdeg 22149 | . . . 4 ⊢ (𝜑 → (𝑌 supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 33 | 31, 32 | unssd 4192 | . . 3 ⊢ (𝜑 → ((𝑋 supp (0g‘𝑅)) ∪ (𝑌 supp (0g‘𝑅))) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 34 | 30, 33 | sstrd 3994 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) supp (0g‘𝑅)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 35 | 1, 2, 3, 4, 5, 7, 17, 34 | ismhp2 22145 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐻‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3436 Vcvv 3480 ∪ cun 3949 ◡ccnv 5684 “ cima 5688 ‘cfv 6561 (class class class)co 7431 ∘f cof 7695 supp csupp 8185 ↑m cmap 8866 Fincfn 8985 ℕcn 12266 ℕ0cn0 12526 Basecbs 17247 ↾s cress 17274 +gcplusg 17297 0gc0g 17484 Σg cgsu 17485 Grpcgrp 18951 ℂfldccnfld 21364 mPoly cmpl 21926 mHomP cmhp 22133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-prds 17492 df-pws 17494 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-subg 19141 df-psr 21929 df-mpl 21931 df-mhp 22140 |
| This theorem is referenced by: mhpsubg 22157 mhpind 42604 |
| Copyright terms: Public domain | W3C validator |