Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphf3 Structured version   Visualization version   GIF version

Theorem mhphf3 42580
Description: A homogeneous polynomial defines a homogeneous function; this is mhphf2 42579 with the finite support restriction (frlmpws 21665, frlmbas 21670) on the assignments 𝐴 from variables to values. See comment of mhphf2 42579. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
mhphf3.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
mhphf3.h 𝐻 = (𝐼 mHomP 𝑈)
mhphf3.u 𝑈 = (𝑆s 𝑅)
mhphf3.k 𝐾 = (Base‘𝑆)
mhphf3.f 𝐹 = (𝑆 freeLMod 𝐼)
mhphf3.m 𝑀 = (Base‘𝐹)
mhphf3.b = ( ·𝑠𝐹)
mhphf3.x · = (.r𝑆)
mhphf3.e = (.g‘(mulGrp‘𝑆))
mhphf3.s (𝜑𝑆 ∈ CRing)
mhphf3.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mhphf3.l (𝜑𝐿𝑅)
mhphf3.p (𝜑𝑋 ∈ (𝐻𝑁))
mhphf3.a (𝜑𝐴𝑀)
Assertion
Ref Expression
mhphf3 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))

Proof of Theorem mhphf3
StepHypRef Expression
1 mhphf3.f . . . 4 𝐹 = (𝑆 freeLMod 𝐼)
2 mhphf3.m . . . 4 𝑀 = (Base‘𝐹)
3 mhphf3.k . . . 4 𝐾 = (Base‘𝑆)
4 reldmmhp 22030 . . . . 5 Rel dom mHomP
5 mhphf3.h . . . . 5 𝐻 = (𝐼 mHomP 𝑈)
6 mhphf3.p . . . . 5 (𝜑𝑋 ∈ (𝐻𝑁))
74, 5, 6elfvov1 7431 . . . 4 (𝜑𝐼 ∈ V)
8 mhphf3.r . . . . . 6 (𝜑𝑅 ∈ (SubRing‘𝑆))
93subrgss 20487 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
108, 9syl 17 . . . . 5 (𝜑𝑅𝐾)
11 mhphf3.l . . . . 5 (𝜑𝐿𝑅)
1210, 11sseldd 3949 . . . 4 (𝜑𝐿𝐾)
13 mhphf3.a . . . 4 (𝜑𝐴𝑀)
14 mhphf3.b . . . 4 = ( ·𝑠𝐹)
15 mhphf3.x . . . 4 · = (.r𝑆)
161, 2, 3, 7, 12, 13, 14, 15frlmvscafval 21681 . . 3 (𝜑 → (𝐿 𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴))
1716fveq2d 6864 . 2 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)))
18 mhphf3.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
19 mhphf3.u . . 3 𝑈 = (𝑆s 𝑅)
20 mhphf3.e . . 3 = (.g‘(mulGrp‘𝑆))
21 mhphf3.s . . 3 (𝜑𝑆 ∈ CRing)
221, 3, 2frlmbasmap 21674 . . . 4 ((𝐼 ∈ V ∧ 𝐴𝑀) → 𝐴 ∈ (𝐾m 𝐼))
237, 13, 22syl2anc 584 . . 3 (𝜑𝐴 ∈ (𝐾m 𝐼))
2418, 5, 19, 3, 15, 20, 21, 8, 11, 6, 23mhphf 42578 . 2 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
2517, 24eqtrd 2765 1 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  wss 3916  {csn 4591   × cxp 5638  cfv 6513  (class class class)co 7389  f cof 7653  m cmap 8801  Basecbs 17185  s cress 17206  .rcmulr 17227   ·𝑠 cvsca 17230  .gcmg 19005  mulGrpcmgp 20055  CRingccrg 20149  SubRingcsubrg 20484   freeLMod cfrlm 21661   evalSub ces 21985   mHomP cmhp 22022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-addf 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-ofr 7656  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-sup 9399  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-fzo 13622  df-seq 13973  df-hash 14302  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-srg 20102  df-ring 20150  df-cring 20151  df-rhm 20387  df-subrng 20461  df-subrg 20485  df-lmod 20774  df-lss 20844  df-lsp 20884  df-sra 21086  df-rgmod 21087  df-cnfld 21271  df-dsmm 21647  df-frlm 21662  df-assa 21768  df-asp 21769  df-ascl 21770  df-psr 21824  df-mvr 21825  df-mpl 21826  df-evls 21987  df-mhp 22029
This theorem is referenced by:  mhphf4  42581
  Copyright terms: Public domain W3C validator