| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mhphf3 | Structured version Visualization version GIF version | ||
| Description: A homogeneous polynomial defines a homogeneous function; this is mhphf2 42587 with the finite support restriction (frlmpws 21725, frlmbas 21730) on the assignments 𝐴 from variables to values. See comment of mhphf2 42587. (Contributed by SN, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| mhphf3.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| mhphf3.h | ⊢ 𝐻 = (𝐼 mHomP 𝑈) |
| mhphf3.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| mhphf3.k | ⊢ 𝐾 = (Base‘𝑆) |
| mhphf3.f | ⊢ 𝐹 = (𝑆 freeLMod 𝐼) |
| mhphf3.m | ⊢ 𝑀 = (Base‘𝐹) |
| mhphf3.b | ⊢ ∙ = ( ·𝑠 ‘𝐹) |
| mhphf3.x | ⊢ · = (.r‘𝑆) |
| mhphf3.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
| mhphf3.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| mhphf3.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| mhphf3.l | ⊢ (𝜑 → 𝐿 ∈ 𝑅) |
| mhphf3.p | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
| mhphf3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑀) |
| Ref | Expression |
|---|---|
| mhphf3 | ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhphf3.f | . . . 4 ⊢ 𝐹 = (𝑆 freeLMod 𝐼) | |
| 2 | mhphf3.m | . . . 4 ⊢ 𝑀 = (Base‘𝐹) | |
| 3 | mhphf3.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
| 4 | reldmmhp 22090 | . . . . 5 ⊢ Rel dom mHomP | |
| 5 | mhphf3.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑈) | |
| 6 | mhphf3.p | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
| 7 | 4, 5, 6 | elfvov1 7455 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
| 8 | mhphf3.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 9 | 3 | subrgss 20541 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ 𝐾) |
| 11 | mhphf3.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑅) | |
| 12 | 10, 11 | sseldd 3964 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ 𝐾) |
| 13 | mhphf3.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑀) | |
| 14 | mhphf3.b | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐹) | |
| 15 | mhphf3.x | . . . 4 ⊢ · = (.r‘𝑆) | |
| 16 | 1, 2, 3, 7, 12, 13, 14, 15 | frlmvscafval 21741 | . . 3 ⊢ (𝜑 → (𝐿 ∙ 𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴)) |
| 17 | 16 | fveq2d 6890 | . 2 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
| 18 | mhphf3.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 19 | mhphf3.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 20 | mhphf3.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
| 21 | mhphf3.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 22 | 1, 3, 2 | frlmbasmap 21734 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝐴 ∈ 𝑀) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| 23 | 7, 13, 22 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| 24 | 18, 5, 19, 3, 15, 20, 21, 8, 11, 6, 23 | mhphf 42586 | . 2 ⊢ (𝜑 → ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
| 25 | 17, 24 | eqtrd 2769 | 1 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 {csn 4606 × cxp 5663 ‘cfv 6541 (class class class)co 7413 ∘f cof 7677 ↑m cmap 8848 Basecbs 17230 ↾s cress 17253 .rcmulr 17275 ·𝑠 cvsca 17278 .gcmg 19055 mulGrpcmgp 20106 CRingccrg 20200 SubRingcsubrg 20538 freeLMod cfrlm 21721 evalSub ces 22045 mHomP cmhp 22082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-addf 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14353 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-starv 17289 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-unif 17297 df-hom 17298 df-cco 17299 df-0g 17458 df-gsum 17459 df-prds 17464 df-pws 17466 df-mre 17601 df-mrc 17602 df-acs 17604 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-srg 20153 df-ring 20201 df-cring 20202 df-rhm 20441 df-subrng 20515 df-subrg 20539 df-lmod 20829 df-lss 20899 df-lsp 20939 df-sra 21141 df-rgmod 21142 df-cnfld 21328 df-dsmm 21707 df-frlm 21722 df-assa 21828 df-asp 21829 df-ascl 21830 df-psr 21884 df-mvr 21885 df-mpl 21886 df-evls 22047 df-mhp 22089 |
| This theorem is referenced by: mhphf4 42589 |
| Copyright terms: Public domain | W3C validator |