Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mhphf3 | Structured version Visualization version GIF version |
Description: A homogeneous polynomial defines a homogeneous function; this is mhphf2 40481 with the finite support restriction (frlmpws 21006, frlmbas 21011) on the assignments 𝐴 from variables to values. See comment of mhphf2 40481. (Contributed by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
mhphf3.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
mhphf3.h | ⊢ 𝐻 = (𝐼 mHomP 𝑈) |
mhphf3.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
mhphf3.k | ⊢ 𝐾 = (Base‘𝑆) |
mhphf3.f | ⊢ 𝐹 = (𝑆 freeLMod 𝐼) |
mhphf3.m | ⊢ 𝑀 = (Base‘𝐹) |
mhphf3.b | ⊢ ∙ = ( ·𝑠 ‘𝐹) |
mhphf3.x | ⊢ · = (.r‘𝑆) |
mhphf3.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
mhphf3.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhphf3.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
mhphf3.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
mhphf3.l | ⊢ (𝜑 → 𝐿 ∈ 𝑅) |
mhphf3.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhphf3.p | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
mhphf3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑀) |
Ref | Expression |
---|---|
mhphf3 | ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhphf3.f | . . . 4 ⊢ 𝐹 = (𝑆 freeLMod 𝐼) | |
2 | mhphf3.m | . . . 4 ⊢ 𝑀 = (Base‘𝐹) | |
3 | mhphf3.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
4 | mhphf3.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
5 | mhphf3.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
6 | 3 | subrgss 20074 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ 𝐾) |
8 | mhphf3.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑅) | |
9 | 7, 8 | sseldd 3927 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ 𝐾) |
10 | mhphf3.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑀) | |
11 | mhphf3.b | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐹) | |
12 | mhphf3.x | . . . 4 ⊢ · = (.r‘𝑆) | |
13 | 1, 2, 3, 4, 9, 10, 11, 12 | frlmvscafval 21022 | . . 3 ⊢ (𝜑 → (𝐿 ∙ 𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴)) |
14 | 13 | fveq2d 6808 | . 2 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
15 | mhphf3.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
16 | mhphf3.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑈) | |
17 | mhphf3.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
18 | mhphf3.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
19 | mhphf3.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
20 | mhphf3.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
21 | mhphf3.p | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
22 | 1, 3, 2 | frlmbasmap 21015 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝑀) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
23 | 4, 10, 22 | syl2anc 585 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
24 | 15, 16, 17, 3, 12, 18, 4, 19, 5, 8, 20, 21, 23 | mhphf 40480 | . 2 ⊢ (𝜑 → ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
25 | 14, 24 | eqtrd 2776 | 1 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 {csn 4565 × cxp 5598 ‘cfv 6458 (class class class)co 7307 ∘f cof 7563 ↑m cmap 8646 ℕ0cn0 12283 Basecbs 16961 ↾s cress 16990 .rcmulr 17012 ·𝑠 cvsca 17015 .gcmg 18749 mulGrpcmgp 19769 CRingccrg 19833 SubRingcsubrg 20069 freeLMod cfrlm 21002 evalSub ces 21329 mHomP cmhp 21368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-addf 11000 ax-mulf 11001 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3331 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-ofr 7566 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9177 df-sup 9249 df-oi 9317 df-dju 9707 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-fz 13290 df-fzo 13433 df-seq 13772 df-hash 14095 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-mulr 17025 df-starv 17026 df-sca 17027 df-vsca 17028 df-ip 17029 df-tset 17030 df-ple 17031 df-ds 17033 df-unif 17034 df-hom 17035 df-cco 17036 df-0g 17201 df-gsum 17202 df-prds 17207 df-pws 17209 df-mre 17344 df-mrc 17345 df-acs 17347 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-mhm 18479 df-submnd 18480 df-grp 18629 df-minusg 18630 df-sbg 18631 df-mulg 18750 df-subg 18801 df-ghm 18881 df-cntz 18972 df-cmn 19437 df-abl 19438 df-mgp 19770 df-ur 19787 df-srg 19791 df-ring 19834 df-cring 19835 df-rnghom 20008 df-subrg 20071 df-lmod 20174 df-lss 20243 df-lsp 20283 df-sra 20483 df-rgmod 20484 df-cnfld 20647 df-dsmm 20988 df-frlm 21003 df-assa 21109 df-asp 21110 df-ascl 21111 df-psr 21161 df-mvr 21162 df-mpl 21163 df-evls 21331 df-mhp 21372 |
This theorem is referenced by: mhphf4 40483 |
Copyright terms: Public domain | W3C validator |