![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mhphf3 | Structured version Visualization version GIF version |
Description: A homogeneous polynomial defines a homogeneous function; this is mhphf2 42539 with the finite support restriction (frlmpws 21769, frlmbas 21774) on the assignments 𝐴 from variables to values. See comment of mhphf2 42539. (Contributed by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
mhphf3.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
mhphf3.h | ⊢ 𝐻 = (𝐼 mHomP 𝑈) |
mhphf3.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
mhphf3.k | ⊢ 𝐾 = (Base‘𝑆) |
mhphf3.f | ⊢ 𝐹 = (𝑆 freeLMod 𝐼) |
mhphf3.m | ⊢ 𝑀 = (Base‘𝐹) |
mhphf3.b | ⊢ ∙ = ( ·𝑠 ‘𝐹) |
mhphf3.x | ⊢ · = (.r‘𝑆) |
mhphf3.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
mhphf3.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
mhphf3.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
mhphf3.l | ⊢ (𝜑 → 𝐿 ∈ 𝑅) |
mhphf3.p | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
mhphf3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑀) |
Ref | Expression |
---|---|
mhphf3 | ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhphf3.f | . . . 4 ⊢ 𝐹 = (𝑆 freeLMod 𝐼) | |
2 | mhphf3.m | . . . 4 ⊢ 𝑀 = (Base‘𝐹) | |
3 | mhphf3.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
4 | reldmmhp 22140 | . . . . 5 ⊢ Rel dom mHomP | |
5 | mhphf3.h | . . . . 5 ⊢ 𝐻 = (𝐼 mHomP 𝑈) | |
6 | mhphf3.p | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
7 | 4, 5, 6 | elfvov1 7467 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
8 | mhphf3.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
9 | 3 | subrgss 20576 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ 𝐾) |
11 | mhphf3.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑅) | |
12 | 10, 11 | sseldd 3996 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ 𝐾) |
13 | mhphf3.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑀) | |
14 | mhphf3.b | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐹) | |
15 | mhphf3.x | . . . 4 ⊢ · = (.r‘𝑆) | |
16 | 1, 2, 3, 7, 12, 13, 14, 15 | frlmvscafval 21785 | . . 3 ⊢ (𝜑 → (𝐿 ∙ 𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴)) |
17 | 16 | fveq2d 6905 | . 2 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
18 | mhphf3.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
19 | mhphf3.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
20 | mhphf3.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
21 | mhphf3.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
22 | 1, 3, 2 | frlmbasmap 21778 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝐴 ∈ 𝑀) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
23 | 7, 13, 22 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
24 | 18, 5, 19, 3, 15, 20, 21, 8, 11, 6, 23 | mhphf 42538 | . 2 ⊢ (𝜑 → ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
25 | 17, 24 | eqtrd 2773 | 1 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1535 ∈ wcel 2104 Vcvv 3477 ⊆ wss 3963 {csn 4630 × cxp 5681 ‘cfv 6558 (class class class)co 7425 ∘f cof 7689 ↑m cmap 8859 Basecbs 17234 ↾s cress 17263 .rcmulr 17288 ·𝑠 cvsca 17291 .gcmg 19083 mulGrpcmgp 20137 CRingccrg 20237 SubRingcsubrg 20571 freeLMod cfrlm 21765 evalSub ces 22095 mHomP cmhp 22132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-addf 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4915 df-int 4954 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-isom 6567 df-riota 7381 df-ov 7428 df-oprab 7429 df-mpo 7430 df-of 7691 df-ofr 7692 df-om 7881 df-1st 8007 df-2nd 8008 df-supp 8179 df-frecs 8299 df-wrecs 8330 df-recs 8404 df-rdg 8443 df-1o 8499 df-2o 8500 df-er 8738 df-map 8861 df-pm 8862 df-ixp 8931 df-en 8979 df-dom 8980 df-sdom 8981 df-fin 8982 df-fsupp 9394 df-sup 9473 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11485 df-neg 11486 df-nn 12258 df-2 12320 df-3 12321 df-4 12322 df-5 12323 df-6 12324 df-7 12325 df-8 12326 df-9 12327 df-n0 12518 df-z 12605 df-dec 12725 df-uz 12870 df-fz 13538 df-fzo 13682 df-seq 14029 df-hash 14356 df-struct 17170 df-sets 17187 df-slot 17205 df-ndx 17217 df-base 17235 df-ress 17264 df-plusg 17300 df-mulr 17301 df-starv 17302 df-sca 17303 df-vsca 17304 df-ip 17305 df-tset 17306 df-ple 17307 df-ds 17309 df-unif 17310 df-hom 17311 df-cco 17312 df-0g 17477 df-gsum 17478 df-prds 17483 df-pws 17485 df-mre 17620 df-mrc 17621 df-acs 17623 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18794 df-submnd 18795 df-grp 18952 df-minusg 18953 df-sbg 18954 df-mulg 19084 df-subg 19139 df-ghm 19229 df-cntz 19333 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20156 df-ur 20185 df-srg 20190 df-ring 20238 df-cring 20239 df-rhm 20474 df-subrng 20548 df-subrg 20573 df-lmod 20858 df-lss 20929 df-lsp 20969 df-sra 21171 df-rgmod 21172 df-cnfld 21364 df-dsmm 21751 df-frlm 21766 df-assa 21872 df-asp 21873 df-ascl 21874 df-psr 21928 df-mvr 21929 df-mpl 21930 df-evls 22097 df-mhp 22139 |
This theorem is referenced by: mhphf4 42541 |
Copyright terms: Public domain | W3C validator |