![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mhphf3 | Structured version Visualization version GIF version |
Description: A homogeneous polynomial defines a homogeneous function; this is mhphf2 42545 with the finite support restriction (frlmpws 21787, frlmbas 21792) on the assignments 𝐴 from variables to values. See comment of mhphf2 42545. (Contributed by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
mhphf3.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
mhphf3.h | ⊢ 𝐻 = (𝐼 mHomP 𝑈) |
mhphf3.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
mhphf3.k | ⊢ 𝐾 = (Base‘𝑆) |
mhphf3.f | ⊢ 𝐹 = (𝑆 freeLMod 𝐼) |
mhphf3.m | ⊢ 𝑀 = (Base‘𝐹) |
mhphf3.b | ⊢ ∙ = ( ·𝑠 ‘𝐹) |
mhphf3.x | ⊢ · = (.r‘𝑆) |
mhphf3.e | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
mhphf3.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mhphf3.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
mhphf3.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
mhphf3.l | ⊢ (𝜑 → 𝐿 ∈ 𝑅) |
mhphf3.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
mhphf3.p | ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) |
mhphf3.a | ⊢ (𝜑 → 𝐴 ∈ 𝑀) |
Ref | Expression |
---|---|
mhphf3 | ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhphf3.f | . . . 4 ⊢ 𝐹 = (𝑆 freeLMod 𝐼) | |
2 | mhphf3.m | . . . 4 ⊢ 𝑀 = (Base‘𝐹) | |
3 | mhphf3.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
4 | mhphf3.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
5 | mhphf3.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
6 | 3 | subrgss 20594 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ 𝐾) |
8 | mhphf3.l | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ 𝑅) | |
9 | 7, 8 | sseldd 4009 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ 𝐾) |
10 | mhphf3.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑀) | |
11 | mhphf3.b | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐹) | |
12 | mhphf3.x | . . . 4 ⊢ · = (.r‘𝑆) | |
13 | 1, 2, 3, 4, 9, 10, 11, 12 | frlmvscafval 21803 | . . 3 ⊢ (𝜑 → (𝐿 ∙ 𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴)) |
14 | 13 | fveq2d 6919 | . 2 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴))) |
15 | mhphf3.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
16 | mhphf3.h | . . 3 ⊢ 𝐻 = (𝐼 mHomP 𝑈) | |
17 | mhphf3.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
18 | mhphf3.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
19 | mhphf3.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
20 | mhphf3.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
21 | mhphf3.p | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑁)) | |
22 | 1, 3, 2 | frlmbasmap 21796 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝑀) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
23 | 4, 10, 22 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
24 | 15, 16, 17, 3, 12, 18, 4, 19, 5, 8, 20, 21, 23 | mhphf 42544 | . 2 ⊢ (𝜑 → ((𝑄‘𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
25 | 14, 24 | eqtrd 2780 | 1 ⊢ (𝜑 → ((𝑄‘𝑋)‘(𝐿 ∙ 𝐴)) = ((𝑁 ↑ 𝐿) · ((𝑄‘𝑋)‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {csn 4648 × cxp 5693 ‘cfv 6568 (class class class)co 7443 ∘f cof 7706 ↑m cmap 8878 ℕ0cn0 12547 Basecbs 17252 ↾s cress 17281 .rcmulr 17306 ·𝑠 cvsca 17309 .gcmg 19101 mulGrpcmgp 20155 CRingccrg 20255 SubRingcsubrg 20589 freeLMod cfrlm 21783 evalSub ces 22112 mHomP cmhp 22149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 ax-addf 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-se 5651 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-isom 6577 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-of 7708 df-ofr 7709 df-om 7898 df-1st 8024 df-2nd 8025 df-supp 8196 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-2o 8517 df-er 8757 df-map 8880 df-pm 8881 df-ixp 8950 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-fsupp 9426 df-sup 9505 df-oi 9573 df-card 10002 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-9 12357 df-n0 12548 df-z 12634 df-dec 12753 df-uz 12898 df-fz 13562 df-fzo 13706 df-seq 14047 df-hash 14374 df-struct 17188 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-mulr 17319 df-starv 17320 df-sca 17321 df-vsca 17322 df-ip 17323 df-tset 17324 df-ple 17325 df-ds 17327 df-unif 17328 df-hom 17329 df-cco 17330 df-0g 17495 df-gsum 17496 df-prds 17501 df-pws 17503 df-mre 17638 df-mrc 17639 df-acs 17641 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-mhm 18812 df-submnd 18813 df-grp 18970 df-minusg 18971 df-sbg 18972 df-mulg 19102 df-subg 19157 df-ghm 19247 df-cntz 19351 df-cmn 19818 df-abl 19819 df-mgp 20156 df-rng 20174 df-ur 20203 df-srg 20208 df-ring 20256 df-cring 20257 df-rhm 20492 df-subrng 20566 df-subrg 20591 df-lmod 20876 df-lss 20947 df-lsp 20987 df-sra 21189 df-rgmod 21190 df-cnfld 21382 df-dsmm 21769 df-frlm 21784 df-assa 21890 df-asp 21891 df-ascl 21892 df-psr 21945 df-mvr 21946 df-mpl 21947 df-evls 22114 df-mhp 22156 |
This theorem is referenced by: mhphf4 42547 |
Copyright terms: Public domain | W3C validator |