Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphf3 Structured version   Visualization version   GIF version

Theorem mhphf3 42587
Description: A homogeneous polynomial defines a homogeneous function; this is mhphf2 42586 with the finite support restriction (frlmpws 21659, frlmbas 21664) on the assignments 𝐴 from variables to values. See comment of mhphf2 42586. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
mhphf3.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
mhphf3.h 𝐻 = (𝐼 mHomP 𝑈)
mhphf3.u 𝑈 = (𝑆s 𝑅)
mhphf3.k 𝐾 = (Base‘𝑆)
mhphf3.f 𝐹 = (𝑆 freeLMod 𝐼)
mhphf3.m 𝑀 = (Base‘𝐹)
mhphf3.b = ( ·𝑠𝐹)
mhphf3.x · = (.r𝑆)
mhphf3.e = (.g‘(mulGrp‘𝑆))
mhphf3.s (𝜑𝑆 ∈ CRing)
mhphf3.r (𝜑𝑅 ∈ (SubRing‘𝑆))
mhphf3.l (𝜑𝐿𝑅)
mhphf3.p (𝜑𝑋 ∈ (𝐻𝑁))
mhphf3.a (𝜑𝐴𝑀)
Assertion
Ref Expression
mhphf3 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))

Proof of Theorem mhphf3
StepHypRef Expression
1 mhphf3.f . . . 4 𝐹 = (𝑆 freeLMod 𝐼)
2 mhphf3.m . . . 4 𝑀 = (Base‘𝐹)
3 mhphf3.k . . . 4 𝐾 = (Base‘𝑆)
4 reldmmhp 22024 . . . . 5 Rel dom mHomP
5 mhphf3.h . . . . 5 𝐻 = (𝐼 mHomP 𝑈)
6 mhphf3.p . . . . 5 (𝜑𝑋 ∈ (𝐻𝑁))
74, 5, 6elfvov1 7429 . . . 4 (𝜑𝐼 ∈ V)
8 mhphf3.r . . . . . 6 (𝜑𝑅 ∈ (SubRing‘𝑆))
93subrgss 20481 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
108, 9syl 17 . . . . 5 (𝜑𝑅𝐾)
11 mhphf3.l . . . . 5 (𝜑𝐿𝑅)
1210, 11sseldd 3947 . . . 4 (𝜑𝐿𝐾)
13 mhphf3.a . . . 4 (𝜑𝐴𝑀)
14 mhphf3.b . . . 4 = ( ·𝑠𝐹)
15 mhphf3.x . . . 4 · = (.r𝑆)
161, 2, 3, 7, 12, 13, 14, 15frlmvscafval 21675 . . 3 (𝜑 → (𝐿 𝐴) = ((𝐼 × {𝐿}) ∘f · 𝐴))
1716fveq2d 6862 . 2 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)))
18 mhphf3.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
19 mhphf3.u . . 3 𝑈 = (𝑆s 𝑅)
20 mhphf3.e . . 3 = (.g‘(mulGrp‘𝑆))
21 mhphf3.s . . 3 (𝜑𝑆 ∈ CRing)
221, 3, 2frlmbasmap 21668 . . . 4 ((𝐼 ∈ V ∧ 𝐴𝑀) → 𝐴 ∈ (𝐾m 𝐼))
237, 13, 22syl2anc 584 . . 3 (𝜑𝐴 ∈ (𝐾m 𝐼))
2418, 5, 19, 3, 15, 20, 21, 8, 11, 6, 23mhphf 42585 . 2 (𝜑 → ((𝑄𝑋)‘((𝐼 × {𝐿}) ∘f · 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
2517, 24eqtrd 2764 1 (𝜑 → ((𝑄𝑋)‘(𝐿 𝐴)) = ((𝑁 𝐿) · ((𝑄𝑋)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  {csn 4589   × cxp 5636  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Basecbs 17179  s cress 17200  .rcmulr 17221   ·𝑠 cvsca 17224  .gcmg 18999  mulGrpcmgp 20049  CRingccrg 20143  SubRingcsubrg 20478   freeLMod cfrlm 21655   evalSub ces 21979   mHomP cmhp 22016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-dsmm 21641  df-frlm 21656  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-evls 21981  df-mhp 22023
This theorem is referenced by:  mhphf4  42588
  Copyright terms: Public domain W3C validator