| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsmhpvvval | Structured version Visualization version GIF version | ||
| Description: Give a formula for the evaluation of a homogeneous polynomial given assignments from variables to values. The difference between this and evlsvvval 42551 is that 𝑏 ∈ 𝐷 is restricted to 𝑏 ∈ 𝐺, that is, we can evaluate an 𝑁-th degree homogeneous polynomial over just the terms where the sum of all variable degrees is 𝑁. (Contributed by SN, 5-Mar-2025.) |
| Ref | Expression |
|---|---|
| evlsmhpvvval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| evlsmhpvvval.p | ⊢ 𝐻 = (𝐼 mHomP 𝑈) |
| evlsmhpvvval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsmhpvvval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| evlsmhpvvval.g | ⊢ 𝐺 = {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} |
| evlsmhpvvval.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlsmhpvvval.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
| evlsmhpvvval.w | ⊢ ↑ = (.g‘𝑀) |
| evlsmhpvvval.x | ⊢ · = (.r‘𝑆) |
| evlsmhpvvval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsmhpvvval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsmhpvvval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) |
| evlsmhpvvval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| Ref | Expression |
|---|---|
| evlsmhpvvval | ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsmhpvvval.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈) | |
| 3 | eqid 2729 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈)) | |
| 4 | evlsmhpvvval.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 5 | evlsmhpvvval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | evlsmhpvvval.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
| 7 | evlsmhpvvval.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑆) | |
| 8 | evlsmhpvvval.w | . . 3 ⊢ ↑ = (.g‘𝑀) | |
| 9 | evlsmhpvvval.x | . . 3 ⊢ · = (.r‘𝑆) | |
| 10 | reldmmhp 22024 | . . . 4 ⊢ Rel dom mHomP | |
| 11 | evlsmhpvvval.p | . . . 4 ⊢ 𝐻 = (𝐼 mHomP 𝑈) | |
| 12 | evlsmhpvvval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) | |
| 13 | 10, 11, 12 | elfvov1 7429 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 14 | evlsmhpvvval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 15 | evlsmhpvvval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 16 | 11, 2, 3, 12 | mhpmpl 22031 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPoly 𝑈))) |
| 17 | evlsmhpvvval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17 | evlsvvval 42551 | . 2 ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| 19 | eqid 2729 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 20 | 14 | crngringd 20155 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 21 | 20 | ringcmnd 20193 | . . 3 ⊢ (𝜑 → 𝑆 ∈ CMnd) |
| 22 | ovex 7420 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 23 | 5, 22 | rabex2 5296 | . . . 4 ⊢ 𝐷 ∈ V |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 25 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ Ring) |
| 26 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 27 | 2, 26, 3, 5, 16 | mplelf 21907 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑈)) |
| 28 | 4 | subrgbas 20490 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈)) |
| 29 | 6 | subrgss 20481 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
| 30 | 28, 29 | eqsstrrd 3982 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (Base‘𝑈) ⊆ 𝐾) |
| 31 | 15, 30 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑈) ⊆ 𝐾) |
| 32 | 27, 31 | fssd 6705 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐷⟶𝐾) |
| 33 | 32 | ffvelcdmda 7056 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘𝑏) ∈ 𝐾) |
| 34 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ V) |
| 35 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ CRing) |
| 36 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| 37 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) | |
| 38 | 5, 6, 7, 8, 34, 35, 36, 37 | evlsvvvallem 42549 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))) ∈ 𝐾) |
| 39 | 6, 9, 25, 33, 38 | ringcld 20169 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) ∈ 𝐾) |
| 40 | 39 | fmpttd 7087 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))):𝐷⟶𝐾) |
| 41 | 4, 19 | subrg0 20488 | . . . . . . . . . 10 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (0g‘𝑆) = (0g‘𝑈)) |
| 42 | 15, 41 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 43 | 42 | oveq2d 7403 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp (0g‘𝑆)) = (𝐹 supp (0g‘𝑈))) |
| 44 | eqid 2729 | . . . . . . . . . 10 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 45 | 11, 44, 5, 12 | mhpdeg 22032 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 46 | evlsmhpvvval.g | . . . . . . . . 9 ⊢ 𝐺 = {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} | |
| 47 | 45, 46 | sseqtrrdi 3988 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ 𝐺) |
| 48 | 43, 47 | eqsstrd 3981 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑆)) ⊆ 𝐺) |
| 49 | fvexd 6873 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
| 50 | 32, 48, 24, 49 | suppssr 8174 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → (𝐹‘𝑏) = (0g‘𝑆)) |
| 51 | 50 | oveq1d 7402 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) = ((0g‘𝑆) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) |
| 52 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → 𝑆 ∈ Ring) |
| 53 | eldifi 4094 | . . . . . . 7 ⊢ (𝑏 ∈ (𝐷 ∖ 𝐺) → 𝑏 ∈ 𝐷) | |
| 54 | 53, 38 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))) ∈ 𝐾) |
| 55 | 6, 9, 19, 52, 54 | ringlzd 20204 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → ((0g‘𝑆) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) = (0g‘𝑆)) |
| 56 | 51, 55 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) = (0g‘𝑆)) |
| 57 | 56, 24 | suppss2 8179 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) supp (0g‘𝑆)) ⊆ 𝐺) |
| 58 | 5, 2, 4, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17 | evlsvvvallem2 42550 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) finSupp (0g‘𝑆)) |
| 59 | 6, 19, 21, 24, 40, 57, 58 | gsumres 19843 | . 2 ⊢ (𝜑 → (𝑆 Σg ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) ↾ 𝐺)) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| 60 | 46 | ssrab3 4045 | . . . . 5 ⊢ 𝐺 ⊆ 𝐷 |
| 61 | 60 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ 𝐷) |
| 62 | 61 | resmptd 6011 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) ↾ 𝐺) = (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))))) |
| 63 | 62 | oveq2d 7403 | . 2 ⊢ (𝜑 → (𝑆 Σg ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) ↾ 𝐺)) = (𝑆 Σg (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| 64 | 18, 59, 63 | 3eqtr2d 2770 | 1 ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ↦ cmpt 5188 ◡ccnv 5637 ↾ cres 5640 “ cima 5641 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 ↑m cmap 8799 Fincfn 8918 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 ↾s cress 17200 .rcmulr 17221 0gc0g 17402 Σg cgsu 17403 .gcmg 18999 mulGrpcmgp 20049 Ringcrg 20142 CRingccrg 20143 SubRingcsubrg 20478 ℂfldccnfld 21264 mPoly cmpl 21815 evalSub ces 21979 mHomP cmhp 22016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-evls 21981 df-mhp 22023 |
| This theorem is referenced by: mhphf 42585 |
| Copyright terms: Public domain | W3C validator |