![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsmhpvvval | Structured version Visualization version GIF version |
Description: Give a formula for the evaluation of a homogeneous polynomial given assignments from variables to values. The difference between this and evlsvvval 42550 is that 𝑏 ∈ 𝐷 is restricted to 𝑏 ∈ 𝐺, that is, we can evaluate an 𝑁-th degree homogeneous polynomial over just the terms where the sum of all variable degrees is 𝑁. (Contributed by SN, 5-Mar-2025.) |
Ref | Expression |
---|---|
evlsmhpvvval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
evlsmhpvvval.p | ⊢ 𝐻 = (𝐼 mHomP 𝑈) |
evlsmhpvvval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlsmhpvvval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
evlsmhpvvval.g | ⊢ 𝐺 = {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} |
evlsmhpvvval.k | ⊢ 𝐾 = (Base‘𝑆) |
evlsmhpvvval.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
evlsmhpvvval.w | ⊢ ↑ = (.g‘𝑀) |
evlsmhpvvval.x | ⊢ · = (.r‘𝑆) |
evlsmhpvvval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlsmhpvvval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlsmhpvvval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) |
evlsmhpvvval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
Ref | Expression |
---|---|
evlsmhpvvval | ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsmhpvvval.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
2 | eqid 2735 | . . 3 ⊢ (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈) | |
3 | eqid 2735 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈)) | |
4 | evlsmhpvvval.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
5 | evlsmhpvvval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | evlsmhpvvval.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
7 | evlsmhpvvval.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑆) | |
8 | evlsmhpvvval.w | . . 3 ⊢ ↑ = (.g‘𝑀) | |
9 | evlsmhpvvval.x | . . 3 ⊢ · = (.r‘𝑆) | |
10 | reldmmhp 22159 | . . . 4 ⊢ Rel dom mHomP | |
11 | evlsmhpvvval.p | . . . 4 ⊢ 𝐻 = (𝐼 mHomP 𝑈) | |
12 | evlsmhpvvval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) | |
13 | 10, 11, 12 | elfvov1 7473 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
14 | evlsmhpvvval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
15 | evlsmhpvvval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
16 | 11, 2, 3, 12 | mhpmpl 22166 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPoly 𝑈))) |
17 | evlsmhpvvval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17 | evlsvvval 42550 | . 2 ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
19 | eqid 2735 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
20 | 14 | crngringd 20264 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
21 | 20 | ringcmnd 20298 | . . 3 ⊢ (𝜑 → 𝑆 ∈ CMnd) |
22 | ovex 7464 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
23 | 5, 22 | rabex2 5347 | . . . 4 ⊢ 𝐷 ∈ V |
24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
25 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ Ring) |
26 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
27 | 2, 26, 3, 5, 16 | mplelf 22036 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑈)) |
28 | 4 | subrgbas 20598 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈)) |
29 | 6 | subrgss 20589 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
30 | 28, 29 | eqsstrrd 4035 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (Base‘𝑈) ⊆ 𝐾) |
31 | 15, 30 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑈) ⊆ 𝐾) |
32 | 27, 31 | fssd 6754 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐷⟶𝐾) |
33 | 32 | ffvelcdmda 7104 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘𝑏) ∈ 𝐾) |
34 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ V) |
35 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ CRing) |
36 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
37 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) | |
38 | 5, 6, 7, 8, 34, 35, 36, 37 | evlsvvvallem 42548 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))) ∈ 𝐾) |
39 | 6, 9, 25, 33, 38 | ringcld 20277 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) ∈ 𝐾) |
40 | 39 | fmpttd 7135 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))):𝐷⟶𝐾) |
41 | 4, 19 | subrg0 20596 | . . . . . . . . . 10 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (0g‘𝑆) = (0g‘𝑈)) |
42 | 15, 41 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
43 | 42 | oveq2d 7447 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp (0g‘𝑆)) = (𝐹 supp (0g‘𝑈))) |
44 | eqid 2735 | . . . . . . . . . 10 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
45 | 11, 44, 5, 12 | mhpdeg 22167 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
46 | evlsmhpvvval.g | . . . . . . . . 9 ⊢ 𝐺 = {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} | |
47 | 45, 46 | sseqtrrdi 4047 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ 𝐺) |
48 | 43, 47 | eqsstrd 4034 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑆)) ⊆ 𝐺) |
49 | fvexd 6922 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
50 | 32, 48, 24, 49 | suppssr 8219 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → (𝐹‘𝑏) = (0g‘𝑆)) |
51 | 50 | oveq1d 7446 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) = ((0g‘𝑆) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) |
52 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → 𝑆 ∈ Ring) |
53 | eldifi 4141 | . . . . . . 7 ⊢ (𝑏 ∈ (𝐷 ∖ 𝐺) → 𝑏 ∈ 𝐷) | |
54 | 53, 38 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))) ∈ 𝐾) |
55 | 6, 9, 19, 52, 54 | ringlzd 20309 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → ((0g‘𝑆) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) = (0g‘𝑆)) |
56 | 51, 55 | eqtrd 2775 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) = (0g‘𝑆)) |
57 | 56, 24 | suppss2 8224 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) supp (0g‘𝑆)) ⊆ 𝐺) |
58 | 5, 2, 4, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17 | evlsvvvallem2 42549 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) finSupp (0g‘𝑆)) |
59 | 6, 19, 21, 24, 40, 57, 58 | gsumres 19946 | . 2 ⊢ (𝜑 → (𝑆 Σg ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) ↾ 𝐺)) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
60 | 46 | ssrab3 4092 | . . . . 5 ⊢ 𝐺 ⊆ 𝐷 |
61 | 60 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ 𝐷) |
62 | 61 | resmptd 6060 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) ↾ 𝐺) = (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))))) |
63 | 62 | oveq2d 7447 | . 2 ⊢ (𝜑 → (𝑆 Σg ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) ↾ 𝐺)) = (𝑆 Σg (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
64 | 18, 59, 63 | 3eqtr2d 2781 | 1 ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 ∖ cdif 3960 ⊆ wss 3963 ↦ cmpt 5231 ◡ccnv 5688 ↾ cres 5691 “ cima 5692 ‘cfv 6563 (class class class)co 7431 supp csupp 8184 ↑m cmap 8865 Fincfn 8984 ℕcn 12264 ℕ0cn0 12524 Basecbs 17245 ↾s cress 17274 .rcmulr 17299 0gc0g 17486 Σg cgsu 17487 .gcmg 19098 mulGrpcmgp 20152 Ringcrg 20251 CRingccrg 20252 SubRingcsubrg 20586 ℂfldccnfld 21382 mPoly cmpl 21944 evalSub ces 22114 mHomP cmhp 22151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-fzo 13692 df-seq 14040 df-hash 14367 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-gsum 17489 df-prds 17494 df-pws 17496 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-ghm 19244 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-srg 20205 df-ring 20253 df-cring 20254 df-rhm 20489 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-lsp 20988 df-assa 21891 df-asp 21892 df-ascl 21893 df-psr 21947 df-mvr 21948 df-mpl 21949 df-evls 22116 df-mhp 22158 |
This theorem is referenced by: mhphf 42584 |
Copyright terms: Public domain | W3C validator |