| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsmhpvvval | Structured version Visualization version GIF version | ||
| Description: Give a formula for the evaluation of a homogeneous polynomial given assignments from variables to values. The difference between this and evlsvvval 42536 is that 𝑏 ∈ 𝐷 is restricted to 𝑏 ∈ 𝐺, that is, we can evaluate an 𝑁-th degree homogeneous polynomial over just the terms where the sum of all variable degrees is 𝑁. (Contributed by SN, 5-Mar-2025.) |
| Ref | Expression |
|---|---|
| evlsmhpvvval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| evlsmhpvvval.p | ⊢ 𝐻 = (𝐼 mHomP 𝑈) |
| evlsmhpvvval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsmhpvvval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| evlsmhpvvval.g | ⊢ 𝐺 = {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} |
| evlsmhpvvval.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlsmhpvvval.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
| evlsmhpvvval.w | ⊢ ↑ = (.g‘𝑀) |
| evlsmhpvvval.x | ⊢ · = (.r‘𝑆) |
| evlsmhpvvval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsmhpvvval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsmhpvvval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) |
| evlsmhpvvval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| Ref | Expression |
|---|---|
| evlsmhpvvval | ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsmhpvvval.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈) | |
| 3 | eqid 2729 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈)) | |
| 4 | evlsmhpvvval.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 5 | evlsmhpvvval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | evlsmhpvvval.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
| 7 | evlsmhpvvval.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑆) | |
| 8 | evlsmhpvvval.w | . . 3 ⊢ ↑ = (.g‘𝑀) | |
| 9 | evlsmhpvvval.x | . . 3 ⊢ · = (.r‘𝑆) | |
| 10 | reldmmhp 22022 | . . . 4 ⊢ Rel dom mHomP | |
| 11 | evlsmhpvvval.p | . . . 4 ⊢ 𝐻 = (𝐼 mHomP 𝑈) | |
| 12 | evlsmhpvvval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) | |
| 13 | 10, 11, 12 | elfvov1 7391 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 14 | evlsmhpvvval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 15 | evlsmhpvvval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 16 | 11, 2, 3, 12 | mhpmpl 22029 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPoly 𝑈))) |
| 17 | evlsmhpvvval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17 | evlsvvval 42536 | . 2 ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| 19 | eqid 2729 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 20 | 14 | crngringd 20131 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 21 | 20 | ringcmnd 20169 | . . 3 ⊢ (𝜑 → 𝑆 ∈ CMnd) |
| 22 | ovex 7382 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 23 | 5, 22 | rabex2 5280 | . . . 4 ⊢ 𝐷 ∈ V |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 25 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ Ring) |
| 26 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 27 | 2, 26, 3, 5, 16 | mplelf 21905 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑈)) |
| 28 | 4 | subrgbas 20466 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈)) |
| 29 | 6 | subrgss 20457 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
| 30 | 28, 29 | eqsstrrd 3971 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (Base‘𝑈) ⊆ 𝐾) |
| 31 | 15, 30 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑈) ⊆ 𝐾) |
| 32 | 27, 31 | fssd 6669 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐷⟶𝐾) |
| 33 | 32 | ffvelcdmda 7018 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘𝑏) ∈ 𝐾) |
| 34 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ V) |
| 35 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ CRing) |
| 36 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| 37 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) | |
| 38 | 5, 6, 7, 8, 34, 35, 36, 37 | evlsvvvallem 42534 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))) ∈ 𝐾) |
| 39 | 6, 9, 25, 33, 38 | ringcld 20145 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) ∈ 𝐾) |
| 40 | 39 | fmpttd 7049 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))):𝐷⟶𝐾) |
| 41 | 4, 19 | subrg0 20464 | . . . . . . . . . 10 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (0g‘𝑆) = (0g‘𝑈)) |
| 42 | 15, 41 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 43 | 42 | oveq2d 7365 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp (0g‘𝑆)) = (𝐹 supp (0g‘𝑈))) |
| 44 | eqid 2729 | . . . . . . . . . 10 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 45 | 11, 44, 5, 12 | mhpdeg 22030 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 46 | evlsmhpvvval.g | . . . . . . . . 9 ⊢ 𝐺 = {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} | |
| 47 | 45, 46 | sseqtrrdi 3977 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ 𝐺) |
| 48 | 43, 47 | eqsstrd 3970 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑆)) ⊆ 𝐺) |
| 49 | fvexd 6837 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
| 50 | 32, 48, 24, 49 | suppssr 8128 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → (𝐹‘𝑏) = (0g‘𝑆)) |
| 51 | 50 | oveq1d 7364 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) = ((0g‘𝑆) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) |
| 52 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → 𝑆 ∈ Ring) |
| 53 | eldifi 4082 | . . . . . . 7 ⊢ (𝑏 ∈ (𝐷 ∖ 𝐺) → 𝑏 ∈ 𝐷) | |
| 54 | 53, 38 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))) ∈ 𝐾) |
| 55 | 6, 9, 19, 52, 54 | ringlzd 20180 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → ((0g‘𝑆) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) = (0g‘𝑆)) |
| 56 | 51, 55 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) = (0g‘𝑆)) |
| 57 | 56, 24 | suppss2 8133 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) supp (0g‘𝑆)) ⊆ 𝐺) |
| 58 | 5, 2, 4, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17 | evlsvvvallem2 42535 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) finSupp (0g‘𝑆)) |
| 59 | 6, 19, 21, 24, 40, 57, 58 | gsumres 19792 | . 2 ⊢ (𝜑 → (𝑆 Σg ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) ↾ 𝐺)) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| 60 | 46 | ssrab3 4033 | . . . . 5 ⊢ 𝐺 ⊆ 𝐷 |
| 61 | 60 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ 𝐷) |
| 62 | 61 | resmptd 5991 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) ↾ 𝐺) = (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))))) |
| 63 | 62 | oveq2d 7365 | . 2 ⊢ (𝜑 → (𝑆 Σg ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) ↾ 𝐺)) = (𝑆 Σg (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| 64 | 18, 59, 63 | 3eqtr2d 2770 | 1 ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 ∖ cdif 3900 ⊆ wss 3903 ↦ cmpt 5173 ◡ccnv 5618 ↾ cres 5621 “ cima 5622 ‘cfv 6482 (class class class)co 7349 supp csupp 8093 ↑m cmap 8753 Fincfn 8872 ℕcn 12128 ℕ0cn0 12384 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 0gc0g 17343 Σg cgsu 17344 .gcmg 18946 mulGrpcmgp 20025 Ringcrg 20118 CRingccrg 20119 SubRingcsubrg 20454 ℂfldccnfld 21261 mPoly cmpl 21813 evalSub ces 21977 mHomP cmhp 22014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-lmod 20765 df-lss 20835 df-lsp 20875 df-assa 21760 df-asp 21761 df-ascl 21762 df-psr 21816 df-mvr 21817 df-mpl 21818 df-evls 21979 df-mhp 22021 |
| This theorem is referenced by: mhphf 42570 |
| Copyright terms: Public domain | W3C validator |