| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsmhpvvval | Structured version Visualization version GIF version | ||
| Description: Give a formula for the evaluation of a homogeneous polynomial given assignments from variables to values. The difference between this and evlsvvval 42524 is that 𝑏 ∈ 𝐷 is restricted to 𝑏 ∈ 𝐺, that is, we can evaluate an 𝑁-th degree homogeneous polynomial over just the terms where the sum of all variable degrees is 𝑁. (Contributed by SN, 5-Mar-2025.) |
| Ref | Expression |
|---|---|
| evlsmhpvvval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| evlsmhpvvval.p | ⊢ 𝐻 = (𝐼 mHomP 𝑈) |
| evlsmhpvvval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsmhpvvval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| evlsmhpvvval.g | ⊢ 𝐺 = {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} |
| evlsmhpvvval.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlsmhpvvval.m | ⊢ 𝑀 = (mulGrp‘𝑆) |
| evlsmhpvvval.w | ⊢ ↑ = (.g‘𝑀) |
| evlsmhpvvval.x | ⊢ · = (.r‘𝑆) |
| evlsmhpvvval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsmhpvvval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsmhpvvval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) |
| evlsmhpvvval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| Ref | Expression |
|---|---|
| evlsmhpvvval | ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsmhpvvval.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈) | |
| 3 | eqid 2729 | . . 3 ⊢ (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈)) | |
| 4 | evlsmhpvvval.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 5 | evlsmhpvvval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 6 | evlsmhpvvval.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
| 7 | evlsmhpvvval.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑆) | |
| 8 | evlsmhpvvval.w | . . 3 ⊢ ↑ = (.g‘𝑀) | |
| 9 | evlsmhpvvval.x | . . 3 ⊢ · = (.r‘𝑆) | |
| 10 | reldmmhp 22000 | . . . 4 ⊢ Rel dom mHomP | |
| 11 | evlsmhpvvval.p | . . . 4 ⊢ 𝐻 = (𝐼 mHomP 𝑈) | |
| 12 | evlsmhpvvval.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐻‘𝑁)) | |
| 13 | 10, 11, 12 | elfvov1 7411 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
| 14 | evlsmhpvvval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 15 | evlsmhpvvval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 16 | 11, 2, 3, 12 | mhpmpl 22007 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPoly 𝑈))) |
| 17 | evlsmhpvvval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17 | evlsvvval 42524 | . 2 ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| 19 | eqid 2729 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 20 | 14 | crngringd 20131 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 21 | 20 | ringcmnd 20169 | . . 3 ⊢ (𝜑 → 𝑆 ∈ CMnd) |
| 22 | ovex 7402 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 23 | 5, 22 | rabex2 5291 | . . . 4 ⊢ 𝐷 ∈ V |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
| 25 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ Ring) |
| 26 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 27 | 2, 26, 3, 5, 16 | mplelf 21883 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐷⟶(Base‘𝑈)) |
| 28 | 4 | subrgbas 20466 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 = (Base‘𝑈)) |
| 29 | 6 | subrgss 20457 | . . . . . . . . 9 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
| 30 | 28, 29 | eqsstrrd 3979 | . . . . . . . 8 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (Base‘𝑈) ⊆ 𝐾) |
| 31 | 15, 30 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝑈) ⊆ 𝐾) |
| 32 | 27, 31 | fssd 6687 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐷⟶𝐾) |
| 33 | 32 | ffvelcdmda 7038 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘𝑏) ∈ 𝐾) |
| 34 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ V) |
| 35 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ CRing) |
| 36 | 17 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| 37 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) | |
| 38 | 5, 6, 7, 8, 34, 35, 36, 37 | evlsvvvallem 42522 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))) ∈ 𝐾) |
| 39 | 6, 9, 25, 33, 38 | ringcld 20145 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) ∈ 𝐾) |
| 40 | 39 | fmpttd 7069 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))):𝐷⟶𝐾) |
| 41 | 4, 19 | subrg0 20464 | . . . . . . . . . 10 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (0g‘𝑆) = (0g‘𝑈)) |
| 42 | 15, 41 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑈)) |
| 43 | 42 | oveq2d 7385 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp (0g‘𝑆)) = (𝐹 supp (0g‘𝑈))) |
| 44 | eqid 2729 | . . . . . . . . . 10 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 45 | 11, 44, 5, 12 | mhpdeg 22008 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁}) |
| 46 | evlsmhpvvval.g | . . . . . . . . 9 ⊢ 𝐺 = {𝑔 ∈ 𝐷 ∣ ((ℂfld ↾s ℕ0) Σg 𝑔) = 𝑁} | |
| 47 | 45, 46 | sseqtrrdi 3985 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 supp (0g‘𝑈)) ⊆ 𝐺) |
| 48 | 43, 47 | eqsstrd 3978 | . . . . . . 7 ⊢ (𝜑 → (𝐹 supp (0g‘𝑆)) ⊆ 𝐺) |
| 49 | fvexd 6855 | . . . . . . 7 ⊢ (𝜑 → (0g‘𝑆) ∈ V) | |
| 50 | 32, 48, 24, 49 | suppssr 8151 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → (𝐹‘𝑏) = (0g‘𝑆)) |
| 51 | 50 | oveq1d 7384 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) = ((0g‘𝑆) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) |
| 52 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → 𝑆 ∈ Ring) |
| 53 | eldifi 4090 | . . . . . . 7 ⊢ (𝑏 ∈ (𝐷 ∖ 𝐺) → 𝑏 ∈ 𝐷) | |
| 54 | 53, 38 | sylan2 593 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))) ∈ 𝐾) |
| 55 | 6, 9, 19, 52, 54 | ringlzd 20180 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → ((0g‘𝑆) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) = (0g‘𝑆)) |
| 56 | 51, 55 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ (𝐷 ∖ 𝐺)) → ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))) = (0g‘𝑆)) |
| 57 | 56, 24 | suppss2 8156 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) supp (0g‘𝑆)) ⊆ 𝐺) |
| 58 | 5, 2, 4, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17 | evlsvvvallem2 42523 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) finSupp (0g‘𝑆)) |
| 59 | 6, 19, 21, 24, 40, 57, 58 | gsumres 19819 | . 2 ⊢ (𝜑 → (𝑆 Σg ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) ↾ 𝐺)) = (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| 60 | 46 | ssrab3 4041 | . . . . 5 ⊢ 𝐺 ⊆ 𝐷 |
| 61 | 60 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐺 ⊆ 𝐷) |
| 62 | 61 | resmptd 6000 | . . 3 ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) ↾ 𝐺) = (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖))))))) |
| 63 | 62 | oveq2d 7385 | . 2 ⊢ (𝜑 → (𝑆 Σg ((𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))) ↾ 𝐺)) = (𝑆 Σg (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| 64 | 18, 59, 63 | 3eqtr2d 2770 | 1 ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑆 Σg (𝑏 ∈ 𝐺 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 ↦ cmpt 5183 ◡ccnv 5630 ↾ cres 5633 “ cima 5634 ‘cfv 6499 (class class class)co 7369 supp csupp 8116 ↑m cmap 8776 Fincfn 8895 ℕcn 12162 ℕ0cn0 12418 Basecbs 17155 ↾s cress 17176 .rcmulr 17197 0gc0g 17378 Σg cgsu 17379 .gcmg 18975 mulGrpcmgp 20025 Ringcrg 20118 CRingccrg 20119 SubRingcsubrg 20454 ℂfldccnfld 21240 mPoly cmpl 21791 evalSub ces 21955 mHomP cmhp 21992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-lmod 20744 df-lss 20814 df-lsp 20854 df-assa 21738 df-asp 21739 df-ascl 21740 df-psr 21794 df-mvr 21795 df-mpl 21796 df-evls 21957 df-mhp 21999 |
| This theorem is referenced by: mhphf 42558 |
| Copyright terms: Public domain | W3C validator |