Step | Hyp | Ref
| Expression |
1 | | evlsmhpvvval.q |
. . 3
β’ π = ((πΌ evalSub π)βπ
) |
2 | | eqid 2732 |
. . 3
β’ (πΌ mPoly π) = (πΌ mPoly π) |
3 | | eqid 2732 |
. . 3
β’
(Baseβ(πΌ mPoly
π)) = (Baseβ(πΌ mPoly π)) |
4 | | evlsmhpvvval.u |
. . 3
β’ π = (π βΎs π
) |
5 | | evlsmhpvvval.d |
. . 3
β’ π· = {β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} |
6 | | evlsmhpvvval.k |
. . 3
β’ πΎ = (Baseβπ) |
7 | | evlsmhpvvval.m |
. . 3
β’ π = (mulGrpβπ) |
8 | | evlsmhpvvval.w |
. . 3
β’ β =
(.gβπ) |
9 | | evlsmhpvvval.x |
. . 3
β’ Β· =
(.rβπ) |
10 | | evlsmhpvvval.i |
. . 3
β’ (π β πΌ β π) |
11 | | evlsmhpvvval.s |
. . 3
β’ (π β π β CRing) |
12 | | evlsmhpvvval.r |
. . 3
β’ (π β π
β (SubRingβπ)) |
13 | | evlsmhpvvval.p |
. . . 4
β’ π» = (πΌ mHomP π) |
14 | 4 | ovexi 7439 |
. . . . 5
β’ π β V |
15 | 14 | a1i 11 |
. . . 4
β’ (π β π β V) |
16 | | evlsmhpvvval.n |
. . . 4
β’ (π β π β
β0) |
17 | | evlsmhpvvval.f |
. . . 4
β’ (π β πΉ β (π»βπ)) |
18 | 13, 2, 3, 10, 15, 16, 17 | mhpmpl 21678 |
. . 3
β’ (π β πΉ β (Baseβ(πΌ mPoly π))) |
19 | | evlsmhpvvval.a |
. . 3
β’ (π β π΄ β (πΎ βm πΌ)) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 18, 19 | evlsvvval 41132 |
. 2
β’ (π β ((πβπΉ)βπ΄) = (π Ξ£g (π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))))))) |
21 | | eqid 2732 |
. . 3
β’
(0gβπ) = (0gβπ) |
22 | 11 | crngringd 20062 |
. . . 4
β’ (π β π β Ring) |
23 | 22 | ringcmnd 20094 |
. . 3
β’ (π β π β CMnd) |
24 | | ovex 7438 |
. . . . 5
β’
(β0 βm πΌ) β V |
25 | 5, 24 | rabex2 5333 |
. . . 4
β’ π· β V |
26 | 25 | a1i 11 |
. . 3
β’ (π β π· β V) |
27 | 22 | adantr 481 |
. . . . 5
β’ ((π β§ π β π·) β π β Ring) |
28 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
29 | 2, 28, 3, 5, 18 | mplelf 21548 |
. . . . . . 7
β’ (π β πΉ:π·βΆ(Baseβπ)) |
30 | 4 | subrgbas 20364 |
. . . . . . . . 9
β’ (π
β (SubRingβπ) β π
= (Baseβπ)) |
31 | 6 | subrgss 20356 |
. . . . . . . . 9
β’ (π
β (SubRingβπ) β π
β πΎ) |
32 | 30, 31 | eqsstrrd 4020 |
. . . . . . . 8
β’ (π
β (SubRingβπ) β (Baseβπ) β πΎ) |
33 | 12, 32 | syl 17 |
. . . . . . 7
β’ (π β (Baseβπ) β πΎ) |
34 | 29, 33 | fssd 6732 |
. . . . . 6
β’ (π β πΉ:π·βΆπΎ) |
35 | 34 | ffvelcdmda 7083 |
. . . . 5
β’ ((π β§ π β π·) β (πΉβπ) β πΎ) |
36 | 10 | adantr 481 |
. . . . . 6
β’ ((π β§ π β π·) β πΌ β π) |
37 | 11 | adantr 481 |
. . . . . 6
β’ ((π β§ π β π·) β π β CRing) |
38 | 19 | adantr 481 |
. . . . . 6
β’ ((π β§ π β π·) β π΄ β (πΎ βm πΌ)) |
39 | | simpr 485 |
. . . . . 6
β’ ((π β§ π β π·) β π β π·) |
40 | 5, 6, 7, 8, 36, 37, 38, 39 | evlsvvvallem 41130 |
. . . . 5
β’ ((π β§ π β π·) β (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))) β πΎ) |
41 | 6, 9, 27, 35, 40 | ringcld 20073 |
. . . 4
β’ ((π β§ π β π·) β ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ))))) β πΎ) |
42 | 41 | fmpttd 7111 |
. . 3
β’ (π β (π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))))):π·βΆπΎ) |
43 | 4, 21 | subrg0 20362 |
. . . . . . . . . 10
β’ (π
β (SubRingβπ) β
(0gβπ) =
(0gβπ)) |
44 | 12, 43 | syl 17 |
. . . . . . . . 9
β’ (π β (0gβπ) = (0gβπ)) |
45 | 44 | oveq2d 7421 |
. . . . . . . 8
β’ (π β (πΉ supp (0gβπ)) = (πΉ supp (0gβπ))) |
46 | | eqid 2732 |
. . . . . . . . . 10
β’
(0gβπ) = (0gβπ) |
47 | 13, 46, 5, 10, 15, 16, 17 | mhpdeg 21679 |
. . . . . . . . 9
β’ (π β (πΉ supp (0gβπ)) β {π β π· β£ ((βfld
βΎs β0) Ξ£g π) = π}) |
48 | | evlsmhpvvval.g |
. . . . . . . . 9
β’ πΊ = {π β π· β£ ((βfld
βΎs β0) Ξ£g π) = π} |
49 | 47, 48 | sseqtrrdi 4032 |
. . . . . . . 8
β’ (π β (πΉ supp (0gβπ)) β πΊ) |
50 | 45, 49 | eqsstrd 4019 |
. . . . . . 7
β’ (π β (πΉ supp (0gβπ)) β πΊ) |
51 | | fvexd 6903 |
. . . . . . 7
β’ (π β (0gβπ) β V) |
52 | 34, 50, 26, 51 | suppssr 8177 |
. . . . . 6
β’ ((π β§ π β (π· β πΊ)) β (πΉβπ) = (0gβπ)) |
53 | 52 | oveq1d 7420 |
. . . . 5
β’ ((π β§ π β (π· β πΊ)) β ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ))))) = ((0gβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))))) |
54 | 22 | adantr 481 |
. . . . . 6
β’ ((π β§ π β (π· β πΊ)) β π β Ring) |
55 | | eldifi 4125 |
. . . . . . 7
β’ (π β (π· β πΊ) β π β π·) |
56 | 55, 40 | sylan2 593 |
. . . . . 6
β’ ((π β§ π β (π· β πΊ)) β (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))) β πΎ) |
57 | 6, 9, 21, 54, 56 | ringlzd 41082 |
. . . . 5
β’ ((π β§ π β (π· β πΊ)) β ((0gβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ))))) = (0gβπ)) |
58 | 53, 57 | eqtrd 2772 |
. . . 4
β’ ((π β§ π β (π· β πΊ)) β ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ))))) = (0gβπ)) |
59 | 58, 26 | suppss2 8181 |
. . 3
β’ (π β ((π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))))) supp (0gβπ)) β πΊ) |
60 | 5, 2, 4, 3, 6, 7, 8, 9, 10, 11, 12, 18, 19 | evlsvvvallem2 41131 |
. . 3
β’ (π β (π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))))) finSupp (0gβπ)) |
61 | 6, 21, 23, 26, 42, 59, 60 | gsumres 19775 |
. 2
β’ (π β (π Ξ£g ((π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))))) βΎ πΊ)) = (π Ξ£g (π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))))))) |
62 | 48 | ssrab3 4079 |
. . . . 5
β’ πΊ β π· |
63 | 62 | a1i 11 |
. . . 4
β’ (π β πΊ β π·) |
64 | 63 | resmptd 6038 |
. . 3
β’ (π β ((π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))))) βΎ πΊ) = (π β πΊ β¦ ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ))))))) |
65 | 64 | oveq2d 7421 |
. 2
β’ (π β (π Ξ£g ((π β π· β¦ ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))))) βΎ πΊ)) = (π Ξ£g (π β πΊ β¦ ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))))))) |
66 | 20, 61, 65 | 3eqtr2d 2778 |
1
β’ (π β ((πβπΉ)βπ΄) = (π Ξ£g (π β πΊ β¦ ((πΉβπ) Β· (π Ξ£g (π β πΌ β¦ ((πβπ) β (π΄βπ)))))))) |