Step | Hyp | Ref
| Expression |
1 | | mhppwdeg.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | oveq1 7163 |
. . . 4
⊢ (𝑥 = 0 → (𝑥 ↑ 𝑋) = (0 ↑ 𝑋)) |
3 | | oveq2 7164 |
. . . . 5
⊢ (𝑥 = 0 → (𝑀 · 𝑥) = (𝑀 · 0)) |
4 | 3 | fveq2d 6667 |
. . . 4
⊢ (𝑥 = 0 → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · 0))) |
5 | 2, 4 | eleq12d 2846 |
. . 3
⊢ (𝑥 = 0 → ((𝑥 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ (0 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 0)))) |
6 | | oveq1 7163 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 ↑ 𝑋) = (𝑦 ↑ 𝑋)) |
7 | | oveq2 7164 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦)) |
8 | 7 | fveq2d 6667 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · 𝑦))) |
9 | 6, 8 | eleq12d 2846 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑥 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦)))) |
10 | | oveq1 7163 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑥 ↑ 𝑋) = ((𝑦 + 1) ↑ 𝑋)) |
11 | | oveq2 7164 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝑀 · 𝑥) = (𝑀 · (𝑦 + 1))) |
12 | 11 | fveq2d 6667 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · (𝑦 + 1)))) |
13 | 10, 12 | eleq12d 2846 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ ((𝑦 + 1) ↑ 𝑋) ∈ (𝐻‘(𝑀 · (𝑦 + 1))))) |
14 | | oveq1 7163 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑥 ↑ 𝑋) = (𝑁 ↑ 𝑋)) |
15 | | oveq2 7164 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝑀 · 𝑥) = (𝑀 · 𝑁)) |
16 | 15 | fveq2d 6667 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · 𝑁))) |
17 | 14, 16 | eleq12d 2846 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝑥 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ (𝑁 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑁)))) |
18 | | mhppwdeg.p |
. . . . . . . . 9
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
19 | | mhppwdeg.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
20 | | mhppwdeg.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
21 | 18, 19, 20 | mplsca 20790 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
22 | 21 | fveq2d 6667 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑅) =
(1r‘(Scalar‘𝑃))) |
23 | 22 | fveq2d 6667 |
. . . . . 6
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = ((algSc‘𝑃)‘(1r‘(Scalar‘𝑃)))) |
24 | | eqid 2758 |
. . . . . . 7
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
25 | | eqid 2758 |
. . . . . . 7
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
26 | 18 | mpllmod 20796 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ LMod) |
27 | 19, 20, 26 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ LMod) |
28 | 18 | mplring 20797 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) |
29 | 19, 20, 28 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ Ring) |
30 | 24, 25, 27, 29 | ascl1 20661 |
. . . . . 6
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘(Scalar‘𝑃))) = (1r‘𝑃)) |
31 | 23, 30 | eqtrd 2793 |
. . . . 5
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) |
32 | | mhppwdeg.h |
. . . . . 6
⊢ 𝐻 = (𝐼 mHomP 𝑅) |
33 | | eqid 2758 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
34 | | eqid 2758 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
35 | 33, 34 | ringidcl 19403 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
36 | 20, 35 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
37 | 32, 18, 24, 33, 19, 20, 36 | mhpsclcl 20904 |
. . . . 5
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) ∈ (𝐻‘0)) |
38 | 31, 37 | eqeltrrd 2853 |
. . . 4
⊢ (𝜑 → (1r‘𝑃) ∈ (𝐻‘0)) |
39 | | eqid 2758 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
40 | | mhppwdeg.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
41 | | mhppwdeg.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑀)) |
42 | 32, 18, 39, 19, 20, 40, 41 | mhpmpl 20901 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
43 | | mhppwdeg.t |
. . . . . . 7
⊢ 𝑇 = (mulGrp‘𝑃) |
44 | 43, 39 | mgpbas 19327 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑇) |
45 | | eqid 2758 |
. . . . . . 7
⊢
(1r‘𝑃) = (1r‘𝑃) |
46 | 43, 45 | ringidval 19335 |
. . . . . 6
⊢
(1r‘𝑃) = (0g‘𝑇) |
47 | | mhppwdeg.e |
. . . . . 6
⊢ ↑ =
(.g‘𝑇) |
48 | 44, 46, 47 | mulg0 18312 |
. . . . 5
⊢ (𝑋 ∈ (Base‘𝑃) → (0 ↑ 𝑋) = (1r‘𝑃)) |
49 | 42, 48 | syl 17 |
. . . 4
⊢ (𝜑 → (0 ↑ 𝑋) = (1r‘𝑃)) |
50 | 40 | nn0cnd 12009 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℂ) |
51 | 50 | mul01d 10890 |
. . . . 5
⊢ (𝜑 → (𝑀 · 0) = 0) |
52 | 51 | fveq2d 6667 |
. . . 4
⊢ (𝜑 → (𝐻‘(𝑀 · 0)) = (𝐻‘0)) |
53 | 38, 49, 52 | 3eltr4d 2867 |
. . 3
⊢ (𝜑 → (0 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 0))) |
54 | | eqid 2758 |
. . . . 5
⊢
(.r‘𝑃) = (.r‘𝑃) |
55 | 19 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝐼 ∈ 𝑉) |
56 | 20 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑅 ∈ Ring) |
57 | 40 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑀 ∈
ℕ0) |
58 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑦 ∈ ℕ0) |
59 | 57, 58 | nn0mulcld 12012 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · 𝑦) ∈
ℕ0) |
60 | | simpr 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) |
61 | 41 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑋 ∈ (𝐻‘𝑀)) |
62 | 32, 18, 54, 55, 56, 59, 57, 60, 61 | mhpmulcl 20906 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑦 ↑ 𝑋)(.r‘𝑃)𝑋) ∈ (𝐻‘((𝑀 · 𝑦) + 𝑀))) |
63 | 43 | ringmgp 19385 |
. . . . . . 7
⊢ (𝑃 ∈ Ring → 𝑇 ∈ Mnd) |
64 | 29, 63 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ Mnd) |
65 | 64 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑇 ∈ Mnd) |
66 | 42 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑋 ∈ (Base‘𝑃)) |
67 | 43, 54 | mgpplusg 19325 |
. . . . . 6
⊢
(.r‘𝑃) = (+g‘𝑇) |
68 | 44, 47, 67 | mulgnn0p1 18320 |
. . . . 5
⊢ ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈
(Base‘𝑃)) →
((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑃)𝑋)) |
69 | 65, 58, 66, 68 | syl3anc 1368 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑃)𝑋)) |
70 | 50 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑀 ∈ ℂ) |
71 | 58 | nn0cnd 12009 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑦 ∈ ℂ) |
72 | | 1cnd 10687 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 1 ∈ ℂ) |
73 | 70, 71, 72 | adddid 10716 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · (𝑦 + 1)) = ((𝑀 · 𝑦) + (𝑀 · 1))) |
74 | 70 | mulid1d 10709 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · 1) = 𝑀) |
75 | 74 | oveq2d 7172 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑀 · 𝑦) + (𝑀 · 1)) = ((𝑀 · 𝑦) + 𝑀)) |
76 | 73, 75 | eqtrd 2793 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · (𝑦 + 1)) = ((𝑀 · 𝑦) + 𝑀)) |
77 | 76 | fveq2d 6667 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝐻‘(𝑀 · (𝑦 + 1))) = (𝐻‘((𝑀 · 𝑦) + 𝑀))) |
78 | 62, 69, 77 | 3eltr4d 2867 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑦 + 1) ↑ 𝑋) ∈ (𝐻‘(𝑀 · (𝑦 + 1)))) |
79 | 5, 9, 13, 17, 53, 78 | nn0indd 12131 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑁 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑁))) |
80 | 1, 79 | mpdan 686 |
1
⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑁))) |