Step | Hyp | Ref
| Expression |
1 | | mhppwdeg.n |
. 2
β’ (π β π β
β0) |
2 | | oveq1 7424 |
. . . 4
β’ (π₯ = 0 β (π₯ β π) = (0 β π)) |
3 | | oveq2 7425 |
. . . . 5
β’ (π₯ = 0 β (π Β· π₯) = (π Β· 0)) |
4 | 3 | fveq2d 6898 |
. . . 4
β’ (π₯ = 0 β (π»β(π Β· π₯)) = (π»β(π Β· 0))) |
5 | 2, 4 | eleq12d 2819 |
. . 3
β’ (π₯ = 0 β ((π₯ β π) β (π»β(π Β· π₯)) β (0 β π) β (π»β(π Β· 0)))) |
6 | | oveq1 7424 |
. . . 4
β’ (π₯ = π¦ β (π₯ β π) = (π¦ β π)) |
7 | | oveq2 7425 |
. . . . 5
β’ (π₯ = π¦ β (π Β· π₯) = (π Β· π¦)) |
8 | 7 | fveq2d 6898 |
. . . 4
β’ (π₯ = π¦ β (π»β(π Β· π₯)) = (π»β(π Β· π¦))) |
9 | 6, 8 | eleq12d 2819 |
. . 3
β’ (π₯ = π¦ β ((π₯ β π) β (π»β(π Β· π₯)) β (π¦ β π) β (π»β(π Β· π¦)))) |
10 | | oveq1 7424 |
. . . 4
β’ (π₯ = (π¦ + 1) β (π₯ β π) = ((π¦ + 1) β π)) |
11 | | oveq2 7425 |
. . . . 5
β’ (π₯ = (π¦ + 1) β (π Β· π₯) = (π Β· (π¦ + 1))) |
12 | 11 | fveq2d 6898 |
. . . 4
β’ (π₯ = (π¦ + 1) β (π»β(π Β· π₯)) = (π»β(π Β· (π¦ + 1)))) |
13 | 10, 12 | eleq12d 2819 |
. . 3
β’ (π₯ = (π¦ + 1) β ((π₯ β π) β (π»β(π Β· π₯)) β ((π¦ + 1) β π) β (π»β(π Β· (π¦ + 1))))) |
14 | | oveq1 7424 |
. . . 4
β’ (π₯ = π β (π₯ β π) = (π β π)) |
15 | | oveq2 7425 |
. . . . 5
β’ (π₯ = π β (π Β· π₯) = (π Β· π)) |
16 | 15 | fveq2d 6898 |
. . . 4
β’ (π₯ = π β (π»β(π Β· π₯)) = (π»β(π Β· π))) |
17 | 14, 16 | eleq12d 2819 |
. . 3
β’ (π₯ = π β ((π₯ β π) β (π»β(π Β· π₯)) β (π β π) β (π»β(π Β· π)))) |
18 | | mhppwdeg.p |
. . . . . . . . 9
β’ π = (πΌ mPoly π
) |
19 | | reldmmhp 22070 |
. . . . . . . . . 10
β’ Rel dom
mHomP |
20 | | mhppwdeg.h |
. . . . . . . . . 10
β’ π» = (πΌ mHomP π
) |
21 | | mhppwdeg.x |
. . . . . . . . . 10
β’ (π β π β (π»βπ)) |
22 | 19, 20, 21 | elfvov1 7459 |
. . . . . . . . 9
β’ (π β πΌ β V) |
23 | | mhppwdeg.r |
. . . . . . . . 9
β’ (π β π
β Ring) |
24 | 18, 22, 23 | mplsca 21962 |
. . . . . . . 8
β’ (π β π
= (Scalarβπ)) |
25 | 24 | fveq2d 6898 |
. . . . . . 7
β’ (π β (1rβπ
) =
(1rβ(Scalarβπ))) |
26 | 25 | fveq2d 6898 |
. . . . . 6
β’ (π β ((algScβπ)β(1rβπ
)) = ((algScβπ)β(1rβ(Scalarβπ)))) |
27 | | eqid 2725 |
. . . . . . 7
β’
(algScβπ) =
(algScβπ) |
28 | | eqid 2725 |
. . . . . . 7
β’
(Scalarβπ) =
(Scalarβπ) |
29 | 18 | mpllmod 21967 |
. . . . . . . 8
β’ ((πΌ β V β§ π
β Ring) β π β LMod) |
30 | 22, 23, 29 | syl2anc 582 |
. . . . . . 7
β’ (π β π β LMod) |
31 | 18 | mplring 21968 |
. . . . . . . 8
β’ ((πΌ β V β§ π
β Ring) β π β Ring) |
32 | 22, 23, 31 | syl2anc 582 |
. . . . . . 7
β’ (π β π β Ring) |
33 | 27, 28, 30, 32 | ascl1 21822 |
. . . . . 6
β’ (π β ((algScβπ)β(1rβ(Scalarβπ))) = (1rβπ)) |
34 | 26, 33 | eqtrd 2765 |
. . . . 5
β’ (π β ((algScβπ)β(1rβπ
)) = (1rβπ)) |
35 | | eqid 2725 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβπ
) |
36 | | eqid 2725 |
. . . . . . . 8
β’
(1rβπ
) = (1rβπ
) |
37 | 35, 36 | ringidcl 20206 |
. . . . . . 7
β’ (π
β Ring β
(1rβπ
)
β (Baseβπ
)) |
38 | 23, 37 | syl 17 |
. . . . . 6
β’ (π β (1rβπ
) β (Baseβπ
)) |
39 | 20, 18, 27, 35, 22, 23, 38 | mhpsclcl 22079 |
. . . . 5
β’ (π β ((algScβπ)β(1rβπ
)) β (π»β0)) |
40 | 34, 39 | eqeltrrd 2826 |
. . . 4
β’ (π β (1rβπ) β (π»β0)) |
41 | | eqid 2725 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
42 | | mhppwdeg.m |
. . . . . 6
β’ (π β π β
β0) |
43 | 20, 18, 41, 22, 23, 42, 21 | mhpmpl 22076 |
. . . . 5
β’ (π β π β (Baseβπ)) |
44 | | mhppwdeg.t |
. . . . . . 7
β’ π = (mulGrpβπ) |
45 | 44, 41 | mgpbas 20084 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
46 | | eqid 2725 |
. . . . . . 7
β’
(1rβπ) = (1rβπ) |
47 | 44, 46 | ringidval 20127 |
. . . . . 6
β’
(1rβπ) = (0gβπ) |
48 | | mhppwdeg.e |
. . . . . 6
β’ β =
(.gβπ) |
49 | 45, 47, 48 | mulg0 19034 |
. . . . 5
β’ (π β (Baseβπ) β (0 β π) = (1rβπ)) |
50 | 43, 49 | syl 17 |
. . . 4
β’ (π β (0 β π) = (1rβπ)) |
51 | 42 | nn0cnd 12564 |
. . . . . 6
β’ (π β π β β) |
52 | 51 | mul01d 11443 |
. . . . 5
β’ (π β (π Β· 0) = 0) |
53 | 52 | fveq2d 6898 |
. . . 4
β’ (π β (π»β(π Β· 0)) = (π»β0)) |
54 | 40, 50, 53 | 3eltr4d 2840 |
. . 3
β’ (π β (0 β π) β (π»β(π Β· 0))) |
55 | | eqid 2725 |
. . . . 5
β’
(.rβπ) = (.rβπ) |
56 | 23 | ad2antrr 724 |
. . . . 5
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β π
β Ring) |
57 | 42 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β π β
β0) |
58 | | simplr 767 |
. . . . . 6
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β π¦ β β0) |
59 | 57, 58 | nn0mulcld 12567 |
. . . . 5
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β (π Β· π¦) β
β0) |
60 | | simpr 483 |
. . . . 5
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β (π¦ β π) β (π»β(π Β· π¦))) |
61 | 21 | ad2antrr 724 |
. . . . 5
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β π β (π»βπ)) |
62 | 20, 18, 55, 56, 59, 57, 60, 61 | mhpmulcl 22081 |
. . . 4
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β ((π¦ β π)(.rβπ)π) β (π»β((π Β· π¦) + π))) |
63 | 44 | ringmgp 20183 |
. . . . . . 7
β’ (π β Ring β π β Mnd) |
64 | 32, 63 | syl 17 |
. . . . . 6
β’ (π β π β Mnd) |
65 | 64 | ad2antrr 724 |
. . . . 5
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β π β Mnd) |
66 | 43 | ad2antrr 724 |
. . . . 5
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β π β (Baseβπ)) |
67 | 44, 55 | mgpplusg 20082 |
. . . . . 6
β’
(.rβπ) = (+gβπ) |
68 | 45, 48, 67 | mulgnn0p1 19044 |
. . . . 5
β’ ((π β Mnd β§ π¦ β β0
β§ π β
(Baseβπ)) β
((π¦ + 1) β π) = ((π¦ β π)(.rβπ)π)) |
69 | 65, 58, 66, 68 | syl3anc 1368 |
. . . 4
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β ((π¦ + 1) β π) = ((π¦ β π)(.rβπ)π)) |
70 | 51 | ad2antrr 724 |
. . . . . . 7
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β π β β) |
71 | 58 | nn0cnd 12564 |
. . . . . . 7
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β π¦ β β) |
72 | | 1cnd 11239 |
. . . . . . 7
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β 1 β β) |
73 | 70, 71, 72 | adddid 11268 |
. . . . . 6
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β (π Β· (π¦ + 1)) = ((π Β· π¦) + (π Β· 1))) |
74 | 70 | mulridd 11261 |
. . . . . . 7
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β (π Β· 1) = π) |
75 | 74 | oveq2d 7433 |
. . . . . 6
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β ((π Β· π¦) + (π Β· 1)) = ((π Β· π¦) + π)) |
76 | 73, 75 | eqtrd 2765 |
. . . . 5
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β (π Β· (π¦ + 1)) = ((π Β· π¦) + π)) |
77 | 76 | fveq2d 6898 |
. . . 4
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β (π»β(π Β· (π¦ + 1))) = (π»β((π Β· π¦) + π))) |
78 | 62, 69, 77 | 3eltr4d 2840 |
. . 3
β’ (((π β§ π¦ β β0) β§ (π¦ β π) β (π»β(π Β· π¦))) β ((π¦ + 1) β π) β (π»β(π Β· (π¦ + 1)))) |
79 | 5, 9, 13, 17, 54, 78 | nn0indd 12689 |
. 2
β’ ((π β§ π β β0) β (π β π) β (π»β(π Β· π))) |
80 | 1, 79 | mpdan 685 |
1
β’ (π β (π β π) β (π»β(π Β· π))) |