MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhppwdeg Structured version   Visualization version   GIF version

Theorem mhppwdeg 22058
Description: Degree of a homogeneous polynomial raised to a power. General version of deg1pw 26046. (Contributed by SN, 26-Jul-2024.) Remove closure hypotheses. (Revised by SN, 4-Sep-2025.)
Hypotheses
Ref Expression
mhppwdeg.h 𝐻 = (𝐼 mHomP 𝑅)
mhppwdeg.p 𝑃 = (𝐼 mPoly 𝑅)
mhppwdeg.t 𝑇 = (mulGrp‘𝑃)
mhppwdeg.e = (.g𝑇)
mhppwdeg.r (𝜑𝑅 ∈ Ring)
mhppwdeg.n (𝜑𝑁 ∈ ℕ0)
mhppwdeg.x (𝜑𝑋 ∈ (𝐻𝑀))
Assertion
Ref Expression
mhppwdeg (𝜑 → (𝑁 𝑋) ∈ (𝐻‘(𝑀 · 𝑁)))

Proof of Theorem mhppwdeg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhppwdeg.n . 2 (𝜑𝑁 ∈ ℕ0)
2 oveq1 7348 . . . 4 (𝑥 = 0 → (𝑥 𝑋) = (0 𝑋))
3 oveq2 7349 . . . . 5 (𝑥 = 0 → (𝑀 · 𝑥) = (𝑀 · 0))
43fveq2d 6821 . . . 4 (𝑥 = 0 → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · 0)))
52, 4eleq12d 2823 . . 3 (𝑥 = 0 → ((𝑥 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ (0 𝑋) ∈ (𝐻‘(𝑀 · 0))))
6 oveq1 7348 . . . 4 (𝑥 = 𝑦 → (𝑥 𝑋) = (𝑦 𝑋))
7 oveq2 7349 . . . . 5 (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦))
87fveq2d 6821 . . . 4 (𝑥 = 𝑦 → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · 𝑦)))
96, 8eleq12d 2823 . . 3 (𝑥 = 𝑦 → ((𝑥 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))))
10 oveq1 7348 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 𝑋) = ((𝑦 + 1) 𝑋))
11 oveq2 7349 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑀 · 𝑥) = (𝑀 · (𝑦 + 1)))
1211fveq2d 6821 . . . 4 (𝑥 = (𝑦 + 1) → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · (𝑦 + 1))))
1310, 12eleq12d 2823 . . 3 (𝑥 = (𝑦 + 1) → ((𝑥 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ ((𝑦 + 1) 𝑋) ∈ (𝐻‘(𝑀 · (𝑦 + 1)))))
14 oveq1 7348 . . . 4 (𝑥 = 𝑁 → (𝑥 𝑋) = (𝑁 𝑋))
15 oveq2 7349 . . . . 5 (𝑥 = 𝑁 → (𝑀 · 𝑥) = (𝑀 · 𝑁))
1615fveq2d 6821 . . . 4 (𝑥 = 𝑁 → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · 𝑁)))
1714, 16eleq12d 2823 . . 3 (𝑥 = 𝑁 → ((𝑥 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ (𝑁 𝑋) ∈ (𝐻‘(𝑀 · 𝑁))))
18 mhppwdeg.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
19 reldmmhp 22045 . . . . . . . . . 10 Rel dom mHomP
20 mhppwdeg.h . . . . . . . . . 10 𝐻 = (𝐼 mHomP 𝑅)
21 mhppwdeg.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐻𝑀))
2219, 20, 21elfvov1 7383 . . . . . . . . 9 (𝜑𝐼 ∈ V)
23 mhppwdeg.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
2418, 22, 23mplsca 21943 . . . . . . . 8 (𝜑𝑅 = (Scalar‘𝑃))
2524fveq2d 6821 . . . . . . 7 (𝜑 → (1r𝑅) = (1r‘(Scalar‘𝑃)))
2625fveq2d 6821 . . . . . 6 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) = ((algSc‘𝑃)‘(1r‘(Scalar‘𝑃))))
27 eqid 2730 . . . . . . 7 (algSc‘𝑃) = (algSc‘𝑃)
28 eqid 2730 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
2918, 22, 23mpllmodd 21954 . . . . . . 7 (𝜑𝑃 ∈ LMod)
3018, 22, 23mplringd 21953 . . . . . . 7 (𝜑𝑃 ∈ Ring)
3127, 28, 29, 30ascl1 21815 . . . . . 6 (𝜑 → ((algSc‘𝑃)‘(1r‘(Scalar‘𝑃))) = (1r𝑃))
3226, 31eqtrd 2765 . . . . 5 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) = (1r𝑃))
33 eqid 2730 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
34 eqid 2730 . . . . . . . 8 (1r𝑅) = (1r𝑅)
3533, 34ringidcl 20176 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
3623, 35syl 17 . . . . . 6 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
3720, 18, 27, 33, 22, 23, 36mhpsclcl 22055 . . . . 5 (𝜑 → ((algSc‘𝑃)‘(1r𝑅)) ∈ (𝐻‘0))
3832, 37eqeltrrd 2830 . . . 4 (𝜑 → (1r𝑃) ∈ (𝐻‘0))
39 eqid 2730 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
4020, 18, 39, 21mhpmpl 22052 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑃))
41 mhppwdeg.t . . . . . . 7 𝑇 = (mulGrp‘𝑃)
4241, 39mgpbas 20056 . . . . . 6 (Base‘𝑃) = (Base‘𝑇)
43 eqid 2730 . . . . . . 7 (1r𝑃) = (1r𝑃)
4441, 43ringidval 20094 . . . . . 6 (1r𝑃) = (0g𝑇)
45 mhppwdeg.e . . . . . 6 = (.g𝑇)
4642, 44, 45mulg0 18979 . . . . 5 (𝑋 ∈ (Base‘𝑃) → (0 𝑋) = (1r𝑃))
4740, 46syl 17 . . . 4 (𝜑 → (0 𝑋) = (1r𝑃))
4820, 21mhprcl 22051 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
4948nn0cnd 12436 . . . . . 6 (𝜑𝑀 ∈ ℂ)
5049mul01d 11304 . . . . 5 (𝜑 → (𝑀 · 0) = 0)
5150fveq2d 6821 . . . 4 (𝜑 → (𝐻‘(𝑀 · 0)) = (𝐻‘0))
5238, 47, 513eltr4d 2844 . . 3 (𝜑 → (0 𝑋) ∈ (𝐻‘(𝑀 · 0)))
53 eqid 2730 . . . . 5 (.r𝑃) = (.r𝑃)
5423ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑅 ∈ Ring)
55 simpr 484 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦)))
5621ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑋 ∈ (𝐻𝑀))
5720, 18, 53, 54, 55, 56mhpmulcl 22057 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑦 𝑋)(.r𝑃)𝑋) ∈ (𝐻‘((𝑀 · 𝑦) + 𝑀)))
5841ringmgp 20150 . . . . . . 7 (𝑃 ∈ Ring → 𝑇 ∈ Mnd)
5930, 58syl 17 . . . . . 6 (𝜑𝑇 ∈ Mnd)
6059ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑇 ∈ Mnd)
61 simplr 768 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑦 ∈ ℕ0)
6240ad2antrr 726 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑋 ∈ (Base‘𝑃))
6341, 53mgpplusg 20055 . . . . . 6 (.r𝑃) = (+g𝑇)
6442, 45, 63mulgnn0p1 18990 . . . . 5 ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋 ∈ (Base‘𝑃)) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(.r𝑃)𝑋))
6560, 61, 62, 64syl3anc 1373 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(.r𝑃)𝑋))
6649ad2antrr 726 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑀 ∈ ℂ)
6761nn0cnd 12436 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑦 ∈ ℂ)
68 1cnd 11099 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 1 ∈ ℂ)
6966, 67, 68adddid 11128 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · (𝑦 + 1)) = ((𝑀 · 𝑦) + (𝑀 · 1)))
7066mulridd 11121 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · 1) = 𝑀)
7170oveq2d 7357 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑀 · 𝑦) + (𝑀 · 1)) = ((𝑀 · 𝑦) + 𝑀))
7269, 71eqtrd 2765 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · (𝑦 + 1)) = ((𝑀 · 𝑦) + 𝑀))
7372fveq2d 6821 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝐻‘(𝑀 · (𝑦 + 1))) = (𝐻‘((𝑀 · 𝑦) + 𝑀)))
7457, 65, 733eltr4d 2844 . . 3 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑦 + 1) 𝑋) ∈ (𝐻‘(𝑀 · (𝑦 + 1))))
755, 9, 13, 17, 52, 74nn0indd 12562 . 2 ((𝜑𝑁 ∈ ℕ0) → (𝑁 𝑋) ∈ (𝐻‘(𝑀 · 𝑁)))
761, 75mpdan 687 1 (𝜑 → (𝑁 𝑋) ∈ (𝐻‘(𝑀 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  Vcvv 3434  cfv 6477  (class class class)co 7341  cc 10996  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  0cn0 12373  Basecbs 17112  .rcmulr 17154  Scalarcsca 17156  Mndcmnd 18634  .gcmg 18972  mulGrpcmgp 20051  1rcur 20092  Ringcrg 20144  algSccascl 21782   mPoly cmpl 21836   mHomP cmhp 22037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-hash 14230  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-0g 17337  df-gsum 17338  df-prds 17343  df-pws 17345  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-ghm 19118  df-cntz 19222  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-subrng 20454  df-subrg 20478  df-lmod 20788  df-lss 20858  df-cnfld 21285  df-ascl 21785  df-psr 21839  df-mpl 21841  df-mhp 22044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator