Step | Hyp | Ref
| Expression |
1 | | mhppwdeg.n |
. 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
2 | | oveq1 7455 |
. . . 4
⊢ (𝑥 = 0 → (𝑥 ↑ 𝑋) = (0 ↑ 𝑋)) |
3 | | oveq2 7456 |
. . . . 5
⊢ (𝑥 = 0 → (𝑀 · 𝑥) = (𝑀 · 0)) |
4 | 3 | fveq2d 6924 |
. . . 4
⊢ (𝑥 = 0 → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · 0))) |
5 | 2, 4 | eleq12d 2838 |
. . 3
⊢ (𝑥 = 0 → ((𝑥 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ (0 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 0)))) |
6 | | oveq1 7455 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 ↑ 𝑋) = (𝑦 ↑ 𝑋)) |
7 | | oveq2 7456 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦)) |
8 | 7 | fveq2d 6924 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · 𝑦))) |
9 | 6, 8 | eleq12d 2838 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑥 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦)))) |
10 | | oveq1 7455 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑥 ↑ 𝑋) = ((𝑦 + 1) ↑ 𝑋)) |
11 | | oveq2 7456 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝑀 · 𝑥) = (𝑀 · (𝑦 + 1))) |
12 | 11 | fveq2d 6924 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · (𝑦 + 1)))) |
13 | 10, 12 | eleq12d 2838 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ ((𝑦 + 1) ↑ 𝑋) ∈ (𝐻‘(𝑀 · (𝑦 + 1))))) |
14 | | oveq1 7455 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑥 ↑ 𝑋) = (𝑁 ↑ 𝑋)) |
15 | | oveq2 7456 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝑀 · 𝑥) = (𝑀 · 𝑁)) |
16 | 15 | fveq2d 6924 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · 𝑁))) |
17 | 14, 16 | eleq12d 2838 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝑥 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ (𝑁 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑁)))) |
18 | | mhppwdeg.p |
. . . . . . . . 9
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
19 | | reldmmhp 22164 |
. . . . . . . . . 10
⊢ Rel dom
mHomP |
20 | | mhppwdeg.h |
. . . . . . . . . 10
⊢ 𝐻 = (𝐼 mHomP 𝑅) |
21 | | mhppwdeg.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑀)) |
22 | 19, 20, 21 | elfvov1 7490 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ V) |
23 | | mhppwdeg.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
24 | 18, 22, 23 | mplsca 22056 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
25 | 24 | fveq2d 6924 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑅) =
(1r‘(Scalar‘𝑃))) |
26 | 25 | fveq2d 6924 |
. . . . . 6
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = ((algSc‘𝑃)‘(1r‘(Scalar‘𝑃)))) |
27 | | eqid 2740 |
. . . . . . 7
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
28 | | eqid 2740 |
. . . . . . 7
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) |
29 | 18, 22, 23 | mpllmodd 22067 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ LMod) |
30 | 18, 22, 23 | mplringd 22066 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ Ring) |
31 | 27, 28, 29, 30 | ascl1 21928 |
. . . . . 6
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘(Scalar‘𝑃))) = (1r‘𝑃)) |
32 | 26, 31 | eqtrd 2780 |
. . . . 5
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) |
33 | | eqid 2740 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
34 | | eqid 2740 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
35 | 33, 34 | ringidcl 20289 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) |
36 | 23, 35 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) |
37 | 20, 18, 27, 33, 22, 23, 36 | mhpsclcl 22174 |
. . . . 5
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) ∈ (𝐻‘0)) |
38 | 32, 37 | eqeltrrd 2845 |
. . . 4
⊢ (𝜑 → (1r‘𝑃) ∈ (𝐻‘0)) |
39 | | eqid 2740 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
40 | 20, 18, 39, 21 | mhpmpl 22171 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
41 | | mhppwdeg.t |
. . . . . . 7
⊢ 𝑇 = (mulGrp‘𝑃) |
42 | 41, 39 | mgpbas 20167 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑇) |
43 | | eqid 2740 |
. . . . . . 7
⊢
(1r‘𝑃) = (1r‘𝑃) |
44 | 41, 43 | ringidval 20210 |
. . . . . 6
⊢
(1r‘𝑃) = (0g‘𝑇) |
45 | | mhppwdeg.e |
. . . . . 6
⊢ ↑ =
(.g‘𝑇) |
46 | 42, 44, 45 | mulg0 19114 |
. . . . 5
⊢ (𝑋 ∈ (Base‘𝑃) → (0 ↑ 𝑋) = (1r‘𝑃)) |
47 | 40, 46 | syl 17 |
. . . 4
⊢ (𝜑 → (0 ↑ 𝑋) = (1r‘𝑃)) |
48 | 20, 21 | mhprcl 22170 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
49 | 48 | nn0cnd 12615 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℂ) |
50 | 49 | mul01d 11489 |
. . . . 5
⊢ (𝜑 → (𝑀 · 0) = 0) |
51 | 50 | fveq2d 6924 |
. . . 4
⊢ (𝜑 → (𝐻‘(𝑀 · 0)) = (𝐻‘0)) |
52 | 38, 47, 51 | 3eltr4d 2859 |
. . 3
⊢ (𝜑 → (0 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 0))) |
53 | | eqid 2740 |
. . . . 5
⊢
(.r‘𝑃) = (.r‘𝑃) |
54 | 23 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑅 ∈ Ring) |
55 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) |
56 | 21 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑋 ∈ (𝐻‘𝑀)) |
57 | 20, 18, 53, 54, 55, 56 | mhpmulcl 22176 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑦 ↑ 𝑋)(.r‘𝑃)𝑋) ∈ (𝐻‘((𝑀 · 𝑦) + 𝑀))) |
58 | 41 | ringmgp 20266 |
. . . . . . 7
⊢ (𝑃 ∈ Ring → 𝑇 ∈ Mnd) |
59 | 30, 58 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ Mnd) |
60 | 59 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑇 ∈ Mnd) |
61 | | simplr 768 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑦 ∈ ℕ0) |
62 | 40 | ad2antrr 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑋 ∈ (Base‘𝑃)) |
63 | 41, 53 | mgpplusg 20165 |
. . . . . 6
⊢
(.r‘𝑃) = (+g‘𝑇) |
64 | 42, 45, 63 | mulgnn0p1 19125 |
. . . . 5
⊢ ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈
(Base‘𝑃)) →
((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑃)𝑋)) |
65 | 60, 61, 62, 64 | syl3anc 1371 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑃)𝑋)) |
66 | 49 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑀 ∈ ℂ) |
67 | 61 | nn0cnd 12615 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑦 ∈ ℂ) |
68 | | 1cnd 11285 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 1 ∈ ℂ) |
69 | 66, 67, 68 | adddid 11314 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · (𝑦 + 1)) = ((𝑀 · 𝑦) + (𝑀 · 1))) |
70 | 66 | mulridd 11307 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · 1) = 𝑀) |
71 | 70 | oveq2d 7464 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑀 · 𝑦) + (𝑀 · 1)) = ((𝑀 · 𝑦) + 𝑀)) |
72 | 69, 71 | eqtrd 2780 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · (𝑦 + 1)) = ((𝑀 · 𝑦) + 𝑀)) |
73 | 72 | fveq2d 6924 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝐻‘(𝑀 · (𝑦 + 1))) = (𝐻‘((𝑀 · 𝑦) + 𝑀))) |
74 | 57, 65, 73 | 3eltr4d 2859 |
. . 3
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑦 + 1) ↑ 𝑋) ∈ (𝐻‘(𝑀 · (𝑦 + 1)))) |
75 | 5, 9, 13, 17, 52, 74 | nn0indd 12740 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑁 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑁))) |
76 | 1, 75 | mpdan 686 |
1
⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑁))) |