| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mhppwdeg.n | . 2
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 2 |  | oveq1 7438 | . . . 4
⊢ (𝑥 = 0 → (𝑥 ↑ 𝑋) = (0 ↑ 𝑋)) | 
| 3 |  | oveq2 7439 | . . . . 5
⊢ (𝑥 = 0 → (𝑀 · 𝑥) = (𝑀 · 0)) | 
| 4 | 3 | fveq2d 6910 | . . . 4
⊢ (𝑥 = 0 → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · 0))) | 
| 5 | 2, 4 | eleq12d 2835 | . . 3
⊢ (𝑥 = 0 → ((𝑥 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ (0 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 0)))) | 
| 6 |  | oveq1 7438 | . . . 4
⊢ (𝑥 = 𝑦 → (𝑥 ↑ 𝑋) = (𝑦 ↑ 𝑋)) | 
| 7 |  | oveq2 7439 | . . . . 5
⊢ (𝑥 = 𝑦 → (𝑀 · 𝑥) = (𝑀 · 𝑦)) | 
| 8 | 7 | fveq2d 6910 | . . . 4
⊢ (𝑥 = 𝑦 → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · 𝑦))) | 
| 9 | 6, 8 | eleq12d 2835 | . . 3
⊢ (𝑥 = 𝑦 → ((𝑥 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦)))) | 
| 10 |  | oveq1 7438 | . . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑥 ↑ 𝑋) = ((𝑦 + 1) ↑ 𝑋)) | 
| 11 |  | oveq2 7439 | . . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝑀 · 𝑥) = (𝑀 · (𝑦 + 1))) | 
| 12 | 11 | fveq2d 6910 | . . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · (𝑦 + 1)))) | 
| 13 | 10, 12 | eleq12d 2835 | . . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ ((𝑦 + 1) ↑ 𝑋) ∈ (𝐻‘(𝑀 · (𝑦 + 1))))) | 
| 14 |  | oveq1 7438 | . . . 4
⊢ (𝑥 = 𝑁 → (𝑥 ↑ 𝑋) = (𝑁 ↑ 𝑋)) | 
| 15 |  | oveq2 7439 | . . . . 5
⊢ (𝑥 = 𝑁 → (𝑀 · 𝑥) = (𝑀 · 𝑁)) | 
| 16 | 15 | fveq2d 6910 | . . . 4
⊢ (𝑥 = 𝑁 → (𝐻‘(𝑀 · 𝑥)) = (𝐻‘(𝑀 · 𝑁))) | 
| 17 | 14, 16 | eleq12d 2835 | . . 3
⊢ (𝑥 = 𝑁 → ((𝑥 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑥)) ↔ (𝑁 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑁)))) | 
| 18 |  | mhppwdeg.p | . . . . . . . . 9
⊢ 𝑃 = (𝐼 mPoly 𝑅) | 
| 19 |  | reldmmhp 22141 | . . . . . . . . . 10
⊢ Rel dom
mHomP | 
| 20 |  | mhppwdeg.h | . . . . . . . . . 10
⊢ 𝐻 = (𝐼 mHomP 𝑅) | 
| 21 |  | mhppwdeg.x | . . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (𝐻‘𝑀)) | 
| 22 | 19, 20, 21 | elfvov1 7473 | . . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ V) | 
| 23 |  | mhppwdeg.r | . . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 24 | 18, 22, 23 | mplsca 22033 | . . . . . . . 8
⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) | 
| 25 | 24 | fveq2d 6910 | . . . . . . 7
⊢ (𝜑 → (1r‘𝑅) =
(1r‘(Scalar‘𝑃))) | 
| 26 | 25 | fveq2d 6910 | . . . . . 6
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = ((algSc‘𝑃)‘(1r‘(Scalar‘𝑃)))) | 
| 27 |  | eqid 2737 | . . . . . . 7
⊢
(algSc‘𝑃) =
(algSc‘𝑃) | 
| 28 |  | eqid 2737 | . . . . . . 7
⊢
(Scalar‘𝑃) =
(Scalar‘𝑃) | 
| 29 | 18, 22, 23 | mpllmodd 22044 | . . . . . . 7
⊢ (𝜑 → 𝑃 ∈ LMod) | 
| 30 | 18, 22, 23 | mplringd 22043 | . . . . . . 7
⊢ (𝜑 → 𝑃 ∈ Ring) | 
| 31 | 27, 28, 29, 30 | ascl1 21905 | . . . . . 6
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘(Scalar‘𝑃))) = (1r‘𝑃)) | 
| 32 | 26, 31 | eqtrd 2777 | . . . . 5
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) = (1r‘𝑃)) | 
| 33 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 34 |  | eqid 2737 | . . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) | 
| 35 | 33, 34 | ringidcl 20262 | . . . . . . 7
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ (Base‘𝑅)) | 
| 36 | 23, 35 | syl 17 | . . . . . 6
⊢ (𝜑 → (1r‘𝑅) ∈ (Base‘𝑅)) | 
| 37 | 20, 18, 27, 33, 22, 23, 36 | mhpsclcl 22151 | . . . . 5
⊢ (𝜑 → ((algSc‘𝑃)‘(1r‘𝑅)) ∈ (𝐻‘0)) | 
| 38 | 32, 37 | eqeltrrd 2842 | . . . 4
⊢ (𝜑 → (1r‘𝑃) ∈ (𝐻‘0)) | 
| 39 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) | 
| 40 | 20, 18, 39, 21 | mhpmpl 22148 | . . . . 5
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) | 
| 41 |  | mhppwdeg.t | . . . . . . 7
⊢ 𝑇 = (mulGrp‘𝑃) | 
| 42 | 41, 39 | mgpbas 20142 | . . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑇) | 
| 43 |  | eqid 2737 | . . . . . . 7
⊢
(1r‘𝑃) = (1r‘𝑃) | 
| 44 | 41, 43 | ringidval 20180 | . . . . . 6
⊢
(1r‘𝑃) = (0g‘𝑇) | 
| 45 |  | mhppwdeg.e | . . . . . 6
⊢  ↑ =
(.g‘𝑇) | 
| 46 | 42, 44, 45 | mulg0 19092 | . . . . 5
⊢ (𝑋 ∈ (Base‘𝑃) → (0 ↑ 𝑋) = (1r‘𝑃)) | 
| 47 | 40, 46 | syl 17 | . . . 4
⊢ (𝜑 → (0 ↑ 𝑋) = (1r‘𝑃)) | 
| 48 | 20, 21 | mhprcl 22147 | . . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) | 
| 49 | 48 | nn0cnd 12589 | . . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℂ) | 
| 50 | 49 | mul01d 11460 | . . . . 5
⊢ (𝜑 → (𝑀 · 0) = 0) | 
| 51 | 50 | fveq2d 6910 | . . . 4
⊢ (𝜑 → (𝐻‘(𝑀 · 0)) = (𝐻‘0)) | 
| 52 | 38, 47, 51 | 3eltr4d 2856 | . . 3
⊢ (𝜑 → (0 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 0))) | 
| 53 |  | eqid 2737 | . . . . 5
⊢
(.r‘𝑃) = (.r‘𝑃) | 
| 54 | 23 | ad2antrr 726 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑅 ∈ Ring) | 
| 55 |  | simpr 484 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) | 
| 56 | 21 | ad2antrr 726 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑋 ∈ (𝐻‘𝑀)) | 
| 57 | 20, 18, 53, 54, 55, 56 | mhpmulcl 22153 | . . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑦 ↑ 𝑋)(.r‘𝑃)𝑋) ∈ (𝐻‘((𝑀 · 𝑦) + 𝑀))) | 
| 58 | 41 | ringmgp 20236 | . . . . . . 7
⊢ (𝑃 ∈ Ring → 𝑇 ∈ Mnd) | 
| 59 | 30, 58 | syl 17 | . . . . . 6
⊢ (𝜑 → 𝑇 ∈ Mnd) | 
| 60 | 59 | ad2antrr 726 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑇 ∈ Mnd) | 
| 61 |  | simplr 769 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑦 ∈ ℕ0) | 
| 62 | 40 | ad2antrr 726 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑋 ∈ (Base‘𝑃)) | 
| 63 | 41, 53 | mgpplusg 20141 | . . . . . 6
⊢
(.r‘𝑃) = (+g‘𝑇) | 
| 64 | 42, 45, 63 | mulgnn0p1 19103 | . . . . 5
⊢ ((𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝑋 ∈
(Base‘𝑃)) →
((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑃)𝑋)) | 
| 65 | 60, 61, 62, 64 | syl3anc 1373 | . . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑃)𝑋)) | 
| 66 | 49 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑀 ∈ ℂ) | 
| 67 | 61 | nn0cnd 12589 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 𝑦 ∈ ℂ) | 
| 68 |  | 1cnd 11256 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → 1 ∈ ℂ) | 
| 69 | 66, 67, 68 | adddid 11285 | . . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · (𝑦 + 1)) = ((𝑀 · 𝑦) + (𝑀 · 1))) | 
| 70 | 66 | mulridd 11278 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · 1) = 𝑀) | 
| 71 | 70 | oveq2d 7447 | . . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑀 · 𝑦) + (𝑀 · 1)) = ((𝑀 · 𝑦) + 𝑀)) | 
| 72 | 69, 71 | eqtrd 2777 | . . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝑀 · (𝑦 + 1)) = ((𝑀 · 𝑦) + 𝑀)) | 
| 73 | 72 | fveq2d 6910 | . . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → (𝐻‘(𝑀 · (𝑦 + 1))) = (𝐻‘((𝑀 · 𝑦) + 𝑀))) | 
| 74 | 57, 65, 73 | 3eltr4d 2856 | . . 3
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑦))) → ((𝑦 + 1) ↑ 𝑋) ∈ (𝐻‘(𝑀 · (𝑦 + 1)))) | 
| 75 | 5, 9, 13, 17, 52, 74 | nn0indd 12715 | . 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑁 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑁))) | 
| 76 | 1, 75 | mpdan 687 | 1
⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (𝐻‘(𝑀 · 𝑁))) |