![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eulerpath | Structured version Visualization version GIF version |
Description: A pseudograph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
Ref | Expression |
---|---|
eulerpathpr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
eulerpath | ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releupth 29146 | . . . . . 6 ⊢ Rel (EulerPaths‘𝐺) | |
2 | reldm0 5884 | . . . . . 6 ⊢ (Rel (EulerPaths‘𝐺) → ((EulerPaths‘𝐺) = ∅ ↔ dom (EulerPaths‘𝐺) = ∅)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ((EulerPaths‘𝐺) = ∅ ↔ dom (EulerPaths‘𝐺) = ∅) |
4 | 3 | necon3bii 2997 | . . . 4 ⊢ ((EulerPaths‘𝐺) ≠ ∅ ↔ dom (EulerPaths‘𝐺) ≠ ∅) |
5 | n0 4307 | . . . 4 ⊢ (dom (EulerPaths‘𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺)) | |
6 | 4, 5 | bitri 275 | . . 3 ⊢ ((EulerPaths‘𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺)) |
7 | vex 3450 | . . . . . 6 ⊢ 𝑓 ∈ V | |
8 | 7 | eldm 5857 | . . . . 5 ⊢ (𝑓 ∈ dom (EulerPaths‘𝐺) ↔ ∃𝑝 𝑓(EulerPaths‘𝐺)𝑝) |
9 | eulerpathpr.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | 9 | eulerpathpr 29187 | . . . . . . 7 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑓(EulerPaths‘𝐺)𝑝) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
11 | 10 | expcom 415 | . . . . . 6 ⊢ (𝑓(EulerPaths‘𝐺)𝑝 → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
12 | 11 | exlimiv 1934 | . . . . 5 ⊢ (∃𝑝 𝑓(EulerPaths‘𝐺)𝑝 → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
13 | 8, 12 | sylbi 216 | . . . 4 ⊢ (𝑓 ∈ dom (EulerPaths‘𝐺) → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
14 | 13 | exlimiv 1934 | . . 3 ⊢ (∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺) → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
15 | 6, 14 | sylbi 216 | . 2 ⊢ ((EulerPaths‘𝐺) ≠ ∅ → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
16 | 15 | impcom 409 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2944 {crab 3408 ∅c0 4283 {cpr 4589 class class class wbr 5106 dom cdm 5634 Rel wrel 5639 ‘cfv 6497 0cc0 11052 2c2 12209 ♯chash 14231 ∥ cdvds 16137 Vtxcvtx 27950 UPGraphcupgr 28034 VtxDegcvtxdg 28416 EulerPathsceupth 29144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 ax-pre-sup 11130 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ifp 1063 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-2o 8414 df-oadd 8417 df-er 8649 df-map 8768 df-pm 8769 df-en 8885 df-dom 8886 df-sdom 8887 df-fin 8888 df-sup 9379 df-inf 9380 df-dju 9838 df-card 9876 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-div 11814 df-nn 12155 df-2 12217 df-3 12218 df-n0 12415 df-xnn0 12487 df-z 12501 df-uz 12765 df-rp 12917 df-xadd 13035 df-fz 13426 df-fzo 13569 df-seq 13908 df-exp 13969 df-hash 14232 df-word 14404 df-cj 14985 df-re 14986 df-im 14987 df-sqrt 15121 df-abs 15122 df-dvds 16138 df-vtx 27952 df-iedg 27953 df-edg 28002 df-uhgr 28012 df-ushgr 28013 df-upgr 28036 df-uspgr 28104 df-vtxdg 28417 df-wlks 28550 df-trls 28643 df-eupth 29145 |
This theorem is referenced by: konigsberg 29204 |
Copyright terms: Public domain | W3C validator |