Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eulerpath | Structured version Visualization version GIF version |
Description: A pseudograph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
Ref | Expression |
---|---|
eulerpathpr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
eulerpath | ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releupth 28550 | . . . . . 6 ⊢ Rel (EulerPaths‘𝐺) | |
2 | reldm0 5832 | . . . . . 6 ⊢ (Rel (EulerPaths‘𝐺) → ((EulerPaths‘𝐺) = ∅ ↔ dom (EulerPaths‘𝐺) = ∅)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ((EulerPaths‘𝐺) = ∅ ↔ dom (EulerPaths‘𝐺) = ∅) |
4 | 3 | necon3bii 2996 | . . . 4 ⊢ ((EulerPaths‘𝐺) ≠ ∅ ↔ dom (EulerPaths‘𝐺) ≠ ∅) |
5 | n0 4282 | . . . 4 ⊢ (dom (EulerPaths‘𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺)) | |
6 | 4, 5 | bitri 274 | . . 3 ⊢ ((EulerPaths‘𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺)) |
7 | vex 3435 | . . . . . 6 ⊢ 𝑓 ∈ V | |
8 | 7 | eldm 5804 | . . . . 5 ⊢ (𝑓 ∈ dom (EulerPaths‘𝐺) ↔ ∃𝑝 𝑓(EulerPaths‘𝐺)𝑝) |
9 | eulerpathpr.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | 9 | eulerpathpr 28591 | . . . . . . 7 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑓(EulerPaths‘𝐺)𝑝) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
11 | 10 | expcom 414 | . . . . . 6 ⊢ (𝑓(EulerPaths‘𝐺)𝑝 → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
12 | 11 | exlimiv 1933 | . . . . 5 ⊢ (∃𝑝 𝑓(EulerPaths‘𝐺)𝑝 → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
13 | 8, 12 | sylbi 216 | . . . 4 ⊢ (𝑓 ∈ dom (EulerPaths‘𝐺) → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
14 | 13 | exlimiv 1933 | . . 3 ⊢ (∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺) → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
15 | 6, 14 | sylbi 216 | . 2 ⊢ ((EulerPaths‘𝐺) ≠ ∅ → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
16 | 15 | impcom 408 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 {crab 3068 ∅c0 4258 {cpr 4565 class class class wbr 5075 dom cdm 5586 Rel wrel 5591 ‘cfv 6428 0cc0 10860 2c2 12017 ♯chash 14033 ∥ cdvds 15952 Vtxcvtx 27355 UPGraphcupgr 27439 VtxDegcvtxdg 27821 EulerPathsceupth 28548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 ax-pre-sup 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-2o 8287 df-oadd 8290 df-er 8487 df-map 8606 df-pm 8607 df-en 8723 df-dom 8724 df-sdom 8725 df-fin 8726 df-sup 9190 df-inf 9191 df-dju 9648 df-card 9686 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-div 11622 df-nn 11963 df-2 12025 df-3 12026 df-n0 12223 df-xnn0 12295 df-z 12309 df-uz 12572 df-rp 12720 df-xadd 12838 df-fz 13229 df-fzo 13372 df-seq 13711 df-exp 13772 df-hash 14034 df-word 14207 df-cj 14799 df-re 14800 df-im 14801 df-sqrt 14935 df-abs 14936 df-dvds 15953 df-vtx 27357 df-iedg 27358 df-edg 27407 df-uhgr 27417 df-ushgr 27418 df-upgr 27441 df-uspgr 27509 df-vtxdg 27822 df-wlks 27955 df-trls 28048 df-eupth 28549 |
This theorem is referenced by: konigsberg 28608 |
Copyright terms: Public domain | W3C validator |