MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerpath Structured version   Visualization version   GIF version

Theorem eulerpath 29929
Description: A pseudograph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.)
Hypothesis
Ref Expression
eulerpathpr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
eulerpath ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉

Proof of Theorem eulerpath
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 releupth 29887 . . . . . 6 Rel (EulerPaths‘𝐺)
2 reldm0 5917 . . . . . 6 (Rel (EulerPaths‘𝐺) → ((EulerPaths‘𝐺) = ∅ ↔ dom (EulerPaths‘𝐺) = ∅))
31, 2ax-mp 5 . . . . 5 ((EulerPaths‘𝐺) = ∅ ↔ dom (EulerPaths‘𝐺) = ∅)
43necon3bii 2985 . . . 4 ((EulerPaths‘𝐺) ≠ ∅ ↔ dom (EulerPaths‘𝐺) ≠ ∅)
5 n0 4338 . . . 4 (dom (EulerPaths‘𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺))
64, 5bitri 275 . . 3 ((EulerPaths‘𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺))
7 vex 3470 . . . . . 6 𝑓 ∈ V
87eldm 5890 . . . . 5 (𝑓 ∈ dom (EulerPaths‘𝐺) ↔ ∃𝑝 𝑓(EulerPaths‘𝐺)𝑝)
9 eulerpathpr.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
109eulerpathpr 29928 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝑓(EulerPaths‘𝐺)𝑝) → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
1110expcom 413 . . . . . 6 (𝑓(EulerPaths‘𝐺)𝑝 → (𝐺 ∈ UPGraph → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}))
1211exlimiv 1925 . . . . 5 (∃𝑝 𝑓(EulerPaths‘𝐺)𝑝 → (𝐺 ∈ UPGraph → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}))
138, 12sylbi 216 . . . 4 (𝑓 ∈ dom (EulerPaths‘𝐺) → (𝐺 ∈ UPGraph → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}))
1413exlimiv 1925 . . 3 (∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺) → (𝐺 ∈ UPGraph → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}))
156, 14sylbi 216 . 2 ((EulerPaths‘𝐺) ≠ ∅ → (𝐺 ∈ UPGraph → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}))
1615impcom 407 1 ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  wne 2932  {crab 3424  c0 4314  {cpr 4622   class class class wbr 5138  dom cdm 5666  Rel wrel 5671  cfv 6533  0cc0 11105  2c2 12263  chash 14286  cdvds 16193  Vtxcvtx 28691  UPGraphcupgr 28775  VtxDegcvtxdg 29157  EulerPathsceupth 29885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ifp 1060  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-oadd 8465  df-er 8698  df-map 8817  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-inf 9433  df-dju 9891  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-xadd 13089  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-word 14461  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-vtx 28693  df-iedg 28694  df-edg 28743  df-uhgr 28753  df-ushgr 28754  df-upgr 28777  df-uspgr 28845  df-vtxdg 29158  df-wlks 29291  df-trls 29384  df-eupth 29886
This theorem is referenced by:  konigsberg  29945
  Copyright terms: Public domain W3C validator