| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eulerpath | Structured version Visualization version GIF version | ||
| Description: A pseudograph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| Ref | Expression |
|---|---|
| eulerpathpr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| eulerpath | ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releupth 30179 | . . . . . 6 ⊢ Rel (EulerPaths‘𝐺) | |
| 2 | reldm0 5867 | . . . . . 6 ⊢ (Rel (EulerPaths‘𝐺) → ((EulerPaths‘𝐺) = ∅ ↔ dom (EulerPaths‘𝐺) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ((EulerPaths‘𝐺) = ∅ ↔ dom (EulerPaths‘𝐺) = ∅) |
| 4 | 3 | necon3bii 2980 | . . . 4 ⊢ ((EulerPaths‘𝐺) ≠ ∅ ↔ dom (EulerPaths‘𝐺) ≠ ∅) |
| 5 | n0 4300 | . . . 4 ⊢ (dom (EulerPaths‘𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺)) | |
| 6 | 4, 5 | bitri 275 | . . 3 ⊢ ((EulerPaths‘𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺)) |
| 7 | vex 3440 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 8 | 7 | eldm 5839 | . . . . 5 ⊢ (𝑓 ∈ dom (EulerPaths‘𝐺) ↔ ∃𝑝 𝑓(EulerPaths‘𝐺)𝑝) |
| 9 | eulerpathpr.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 10 | 9 | eulerpathpr 30220 | . . . . . . 7 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑓(EulerPaths‘𝐺)𝑝) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| 11 | 10 | expcom 413 | . . . . . 6 ⊢ (𝑓(EulerPaths‘𝐺)𝑝 → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
| 12 | 11 | exlimiv 1931 | . . . . 5 ⊢ (∃𝑝 𝑓(EulerPaths‘𝐺)𝑝 → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
| 13 | 8, 12 | sylbi 217 | . . . 4 ⊢ (𝑓 ∈ dom (EulerPaths‘𝐺) → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
| 14 | 13 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺) → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
| 15 | 6, 14 | sylbi 217 | . 2 ⊢ ((EulerPaths‘𝐺) ≠ ∅ → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
| 16 | 15 | impcom 407 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ∅c0 4280 {cpr 4575 class class class wbr 5089 dom cdm 5614 Rel wrel 5619 ‘cfv 6481 0cc0 11006 2c2 12180 ♯chash 14237 ∥ cdvds 16163 Vtxcvtx 28974 UPGraphcupgr 29058 VtxDegcvtxdg 29444 EulerPathsceupth 30177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-rp 12891 df-xadd 13012 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-vtx 28976 df-iedg 28977 df-edg 29026 df-uhgr 29036 df-ushgr 29037 df-upgr 29060 df-uspgr 29128 df-vtxdg 29445 df-wlks 29578 df-trls 29669 df-eupth 30178 |
| This theorem is referenced by: konigsberg 30237 |
| Copyright terms: Public domain | W3C validator |