| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eulerpath | Structured version Visualization version GIF version | ||
| Description: A pseudograph with an Eulerian path has either zero or two vertices of odd degree. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
| Ref | Expression |
|---|---|
| eulerpathpr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| eulerpath | ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releupth 30134 | . . . . . 6 ⊢ Rel (EulerPaths‘𝐺) | |
| 2 | reldm0 5893 | . . . . . 6 ⊢ (Rel (EulerPaths‘𝐺) → ((EulerPaths‘𝐺) = ∅ ↔ dom (EulerPaths‘𝐺) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ((EulerPaths‘𝐺) = ∅ ↔ dom (EulerPaths‘𝐺) = ∅) |
| 4 | 3 | necon3bii 2978 | . . . 4 ⊢ ((EulerPaths‘𝐺) ≠ ∅ ↔ dom (EulerPaths‘𝐺) ≠ ∅) |
| 5 | n0 4318 | . . . 4 ⊢ (dom (EulerPaths‘𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺)) | |
| 6 | 4, 5 | bitri 275 | . . 3 ⊢ ((EulerPaths‘𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺)) |
| 7 | vex 3454 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 8 | 7 | eldm 5866 | . . . . 5 ⊢ (𝑓 ∈ dom (EulerPaths‘𝐺) ↔ ∃𝑝 𝑓(EulerPaths‘𝐺)𝑝) |
| 9 | eulerpathpr.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 10 | 9 | eulerpathpr 30175 | . . . . . . 7 ⊢ ((𝐺 ∈ UPGraph ∧ 𝑓(EulerPaths‘𝐺)𝑝) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| 11 | 10 | expcom 413 | . . . . . 6 ⊢ (𝑓(EulerPaths‘𝐺)𝑝 → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
| 12 | 11 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑝 𝑓(EulerPaths‘𝐺)𝑝 → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
| 13 | 8, 12 | sylbi 217 | . . . 4 ⊢ (𝑓 ∈ dom (EulerPaths‘𝐺) → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
| 14 | 13 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓 ∈ dom (EulerPaths‘𝐺) → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
| 15 | 6, 14 | sylbi 217 | . 2 ⊢ ((EulerPaths‘𝐺) ≠ ∅ → (𝐺 ∈ UPGraph → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2})) |
| 16 | 15 | impcom 407 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ (EulerPaths‘𝐺) ≠ ∅) → (♯‘{𝑥 ∈ 𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝐺)‘𝑥)}) ∈ {0, 2}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 {crab 3408 ∅c0 4298 {cpr 4593 class class class wbr 5109 dom cdm 5640 Rel wrel 5645 ‘cfv 6513 0cc0 11074 2c2 12242 ♯chash 14301 ∥ cdvds 16228 Vtxcvtx 28929 UPGraphcupgr 29013 VtxDegcvtxdg 29399 EulerPathsceupth 30132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-er 8673 df-map 8803 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-dju 9860 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-xnn0 12522 df-z 12536 df-uz 12800 df-rp 12958 df-xadd 13079 df-fz 13475 df-fzo 13622 df-seq 13973 df-exp 14033 df-hash 14302 df-word 14485 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-dvds 16229 df-vtx 28931 df-iedg 28932 df-edg 28981 df-uhgr 28991 df-ushgr 28992 df-upgr 29015 df-uspgr 29083 df-vtxdg 29400 df-wlks 29533 df-trls 29626 df-eupth 30133 |
| This theorem is referenced by: konigsberg 30192 |
| Copyright terms: Public domain | W3C validator |