Step | Hyp | Ref
| Expression |
1 | | radcnvlt.a |
. . . . 5
⊢ (𝜑 → (abs‘𝑋) < 𝑅) |
2 | | ressxr 10877 |
. . . . . . 7
⊢ ℝ
⊆ ℝ* |
3 | | radcnvlt.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ ℂ) |
4 | 3 | abscld 15000 |
. . . . . . 7
⊢ (𝜑 → (abs‘𝑋) ∈
ℝ) |
5 | 2, 4 | sseldi 3899 |
. . . . . 6
⊢ (𝜑 → (abs‘𝑋) ∈
ℝ*) |
6 | | iccssxr 13018 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
7 | | pser.g |
. . . . . . . 8
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
8 | | radcnv.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
9 | | radcnv.r |
. . . . . . . 8
⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) |
10 | 7, 8, 9 | radcnvcl 25309 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
11 | 6, 10 | sseldi 3899 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈
ℝ*) |
12 | | xrltnle 10900 |
. . . . . 6
⊢
(((abs‘𝑋)
∈ ℝ* ∧ 𝑅 ∈ ℝ*) →
((abs‘𝑋) < 𝑅 ↔ ¬ 𝑅 ≤ (abs‘𝑋))) |
13 | 5, 11, 12 | syl2anc 587 |
. . . . 5
⊢ (𝜑 → ((abs‘𝑋) < 𝑅 ↔ ¬ 𝑅 ≤ (abs‘𝑋))) |
14 | 1, 13 | mpbid 235 |
. . . 4
⊢ (𝜑 → ¬ 𝑅 ≤ (abs‘𝑋)) |
15 | 9 | breq1i 5060 |
. . . . . 6
⊢ (𝑅 ≤ (abs‘𝑋) ↔ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) ≤ (abs‘𝑋)) |
16 | | ssrab2 3993 |
. . . . . . . 8
⊢ {𝑟 ∈ ℝ ∣ seq0( +
, (𝐺‘𝑟)) ∈ dom ⇝ } ⊆
ℝ |
17 | 16, 2 | sstri 3910 |
. . . . . . 7
⊢ {𝑟 ∈ ℝ ∣ seq0( +
, (𝐺‘𝑟)) ∈ dom ⇝ } ⊆
ℝ* |
18 | | supxrleub 12916 |
. . . . . . 7
⊢ (({𝑟 ∈ ℝ ∣ seq0( +
, (𝐺‘𝑟)) ∈ dom ⇝ } ⊆
ℝ* ∧ (abs‘𝑋) ∈ ℝ*) →
(sup({𝑟 ∈ ℝ
∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) ≤ (abs‘𝑋)
↔ ∀𝑠 ∈
{𝑟 ∈ ℝ ∣
seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }𝑠 ≤ (abs‘𝑋))) |
19 | 17, 5, 18 | sylancr 590 |
. . . . . 6
⊢ (𝜑 → (sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*,
< ) ≤ (abs‘𝑋)
↔ ∀𝑠 ∈
{𝑟 ∈ ℝ ∣
seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }𝑠 ≤ (abs‘𝑋))) |
20 | 15, 19 | syl5bb 286 |
. . . . 5
⊢ (𝜑 → (𝑅 ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }𝑠 ≤ (abs‘𝑋))) |
21 | | fveq2 6717 |
. . . . . . . 8
⊢ (𝑟 = 𝑠 → (𝐺‘𝑟) = (𝐺‘𝑠)) |
22 | 21 | seqeq3d 13582 |
. . . . . . 7
⊢ (𝑟 = 𝑠 → seq0( + , (𝐺‘𝑟)) = seq0( + , (𝐺‘𝑠))) |
23 | 22 | eleq1d 2822 |
. . . . . 6
⊢ (𝑟 = 𝑠 → (seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ )) |
24 | 23 | ralrab 3607 |
. . . . 5
⊢
(∀𝑠 ∈
{𝑟 ∈ ℝ ∣
seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }𝑠 ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ ℝ (seq0( + ,
(𝐺‘𝑠)) ∈ dom ⇝ → 𝑠 ≤ (abs‘𝑋))) |
25 | 20, 24 | bitrdi 290 |
. . . 4
⊢ (𝜑 → (𝑅 ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ ℝ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ → 𝑠 ≤ (abs‘𝑋)))) |
26 | 14, 25 | mtbid 327 |
. . 3
⊢ (𝜑 → ¬ ∀𝑠 ∈ ℝ (seq0( + ,
(𝐺‘𝑠)) ∈ dom ⇝ → 𝑠 ≤ (abs‘𝑋))) |
27 | | rexanali 3184 |
. . 3
⊢
(∃𝑠 ∈
ℝ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ (abs‘𝑋)) ↔ ¬ ∀𝑠 ∈ ℝ (seq0( + ,
(𝐺‘𝑠)) ∈ dom ⇝ → 𝑠 ≤ (abs‘𝑋))) |
28 | 26, 27 | sylibr 237 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ ℝ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ (abs‘𝑋))) |
29 | | ltnle 10912 |
. . . . . . 7
⊢
(((abs‘𝑋)
∈ ℝ ∧ 𝑠
∈ ℝ) → ((abs‘𝑋) < 𝑠 ↔ ¬ 𝑠 ≤ (abs‘𝑋))) |
30 | 4, 29 | sylan 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → ((abs‘𝑋) < 𝑠 ↔ ¬ 𝑠 ≤ (abs‘𝑋))) |
31 | 30 | adantr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ) →
((abs‘𝑋) < 𝑠 ↔ ¬ 𝑠 ≤ (abs‘𝑋))) |
32 | 8 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 𝐴:ℕ0⟶ℂ) |
33 | 3 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 𝑋 ∈ ℂ) |
34 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 𝑠 ∈ ℝ) |
35 | 34 | recnd 10861 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 𝑠 ∈ ℂ) |
36 | | simprr 773 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (abs‘𝑋) < 𝑠) |
37 | | 0red 10836 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 0 ∈ ℝ) |
38 | 33 | abscld 15000 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (abs‘𝑋) ∈ ℝ) |
39 | 33 | absge0d 15008 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 0 ≤ (abs‘𝑋)) |
40 | 37, 38, 34, 39, 36 | lelttrd 10990 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 0 < 𝑠) |
41 | 37, 34, 40 | ltled 10980 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 0 ≤ 𝑠) |
42 | 34, 41 | absidd 14986 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (abs‘𝑠) = 𝑠) |
43 | 36, 42 | breqtrrd 5081 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (abs‘𝑋) < (abs‘𝑠)) |
44 | | simprl 771 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ) |
45 | | radcnvlt1.h |
. . . . . . . 8
⊢ 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺‘𝑋)‘𝑚)))) |
46 | 7, 32, 33, 35, 43, 44, 45 | radcnvlem1 25305 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → seq0( + , 𝐻) ∈ dom ⇝ ) |
47 | 7, 32, 33, 35, 43, 44 | radcnvlem2 25306 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → seq0( + , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ) |
48 | 46, 47 | jca 515 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs
∘ (𝐺‘𝑋))) ∈ dom ⇝
)) |
49 | 48 | expr 460 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ) →
((abs‘𝑋) < 𝑠 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0(
+ , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ))) |
50 | 31, 49 | sylbird 263 |
. . . 4
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ) ∧ seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ) → (¬ 𝑠 ≤ (abs‘𝑋) → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0(
+ , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ))) |
51 | 50 | expimpd 457 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ) → ((seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ (abs‘𝑋)) → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0(
+ , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ))) |
52 | 51 | rexlimdva 3203 |
. 2
⊢ (𝜑 → (∃𝑠 ∈ ℝ (seq0( + , (𝐺‘𝑠)) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ (abs‘𝑋)) → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0(
+ , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ ))) |
53 | 28, 52 | mpd 15 |
1
⊢ (𝜑 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0(
+ , (abs ∘ (𝐺‘𝑋))) ∈ dom ⇝ )) |