MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlt1 Structured version   Visualization version   GIF version

Theorem radcnvlt1 26475
Description: If 𝑋 is within the open disk of radius 𝑅 centered at zero, then the infinite series converges absolutely at 𝑋, and also converges when the series is multiplied by 𝑛. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
radcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvlt.x (𝜑𝑋 ∈ ℂ)
radcnvlt.a (𝜑 → (abs‘𝑋) < 𝑅)
radcnvlt1.h 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
Assertion
Ref Expression
radcnvlt1 (𝜑 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐴   𝑚,𝐻   𝜑,𝑚   𝑚,𝑋   𝑚,𝑟,𝐺
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑚,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝐻(𝑥,𝑛,𝑟)   𝑋(𝑥,𝑛,𝑟)

Proof of Theorem radcnvlt1
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 radcnvlt.a . . . . 5 (𝜑 → (abs‘𝑋) < 𝑅)
2 ressxr 11302 . . . . . . 7 ℝ ⊆ ℝ*
3 radcnvlt.x . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
43abscld 15471 . . . . . . 7 (𝜑 → (abs‘𝑋) ∈ ℝ)
52, 4sselid 3992 . . . . . 6 (𝜑 → (abs‘𝑋) ∈ ℝ*)
6 iccssxr 13466 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
7 pser.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
8 radcnv.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
9 radcnv.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
107, 8, 9radcnvcl 26474 . . . . . . 7 (𝜑𝑅 ∈ (0[,]+∞))
116, 10sselid 3992 . . . . . 6 (𝜑𝑅 ∈ ℝ*)
12 xrltnle 11325 . . . . . 6 (((abs‘𝑋) ∈ ℝ*𝑅 ∈ ℝ*) → ((abs‘𝑋) < 𝑅 ↔ ¬ 𝑅 ≤ (abs‘𝑋)))
135, 11, 12syl2anc 584 . . . . 5 (𝜑 → ((abs‘𝑋) < 𝑅 ↔ ¬ 𝑅 ≤ (abs‘𝑋)))
141, 13mpbid 232 . . . 4 (𝜑 → ¬ 𝑅 ≤ (abs‘𝑋))
159breq1i 5154 . . . . . 6 (𝑅 ≤ (abs‘𝑋) ↔ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) ≤ (abs‘𝑋))
16 ssrab2 4089 . . . . . . . 8 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ
1716, 2sstri 4004 . . . . . . 7 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ*
18 supxrleub 13364 . . . . . . 7 (({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ* ∧ (abs‘𝑋) ∈ ℝ*) → (sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑠 ≤ (abs‘𝑋)))
1917, 5, 18sylancr 587 . . . . . 6 (𝜑 → (sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑠 ≤ (abs‘𝑋)))
2015, 19bitrid 283 . . . . 5 (𝜑 → (𝑅 ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑠 ≤ (abs‘𝑋)))
21 fveq2 6906 . . . . . . . 8 (𝑟 = 𝑠 → (𝐺𝑟) = (𝐺𝑠))
2221seqeq3d 14046 . . . . . . 7 (𝑟 = 𝑠 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑠)))
2322eleq1d 2823 . . . . . 6 (𝑟 = 𝑠 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑠)) ∈ dom ⇝ ))
2423ralrab 3701 . . . . 5 (∀𝑠 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑠 ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ → 𝑠 ≤ (abs‘𝑋)))
2520, 24bitrdi 287 . . . 4 (𝜑 → (𝑅 ≤ (abs‘𝑋) ↔ ∀𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ → 𝑠 ≤ (abs‘𝑋))))
2614, 25mtbid 324 . . 3 (𝜑 → ¬ ∀𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ → 𝑠 ≤ (abs‘𝑋)))
27 rexanali 3099 . . 3 (∃𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ (abs‘𝑋)) ↔ ¬ ∀𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ → 𝑠 ≤ (abs‘𝑋)))
2826, 27sylibr 234 . 2 (𝜑 → ∃𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ (abs‘𝑋)))
29 ltnle 11337 . . . . . . 7 (((abs‘𝑋) ∈ ℝ ∧ 𝑠 ∈ ℝ) → ((abs‘𝑋) < 𝑠 ↔ ¬ 𝑠 ≤ (abs‘𝑋)))
304, 29sylan 580 . . . . . 6 ((𝜑𝑠 ∈ ℝ) → ((abs‘𝑋) < 𝑠 ↔ ¬ 𝑠 ≤ (abs‘𝑋)))
3130adantr 480 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ seq0( + , (𝐺𝑠)) ∈ dom ⇝ ) → ((abs‘𝑋) < 𝑠 ↔ ¬ 𝑠 ≤ (abs‘𝑋)))
328ad2antrr 726 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 𝐴:ℕ0⟶ℂ)
333ad2antrr 726 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 𝑋 ∈ ℂ)
34 simplr 769 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 𝑠 ∈ ℝ)
3534recnd 11286 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 𝑠 ∈ ℂ)
36 simprr 773 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (abs‘𝑋) < 𝑠)
37 0red 11261 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 0 ∈ ℝ)
3833abscld 15471 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (abs‘𝑋) ∈ ℝ)
3933absge0d 15479 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 0 ≤ (abs‘𝑋))
4037, 38, 34, 39, 36lelttrd 11416 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 0 < 𝑠)
4137, 34, 40ltled 11406 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → 0 ≤ 𝑠)
4234, 41absidd 15457 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (abs‘𝑠) = 𝑠)
4336, 42breqtrrd 5175 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (abs‘𝑋) < (abs‘𝑠))
44 simprl 771 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → seq0( + , (𝐺𝑠)) ∈ dom ⇝ )
45 radcnvlt1.h . . . . . . . 8 𝐻 = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
467, 32, 33, 35, 43, 44, 45radcnvlem1 26470 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → seq0( + , 𝐻) ∈ dom ⇝ )
477, 32, 33, 35, 43, 44radcnvlem2 26471 . . . . . . 7 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
4846, 47jca 511 . . . . . 6 (((𝜑𝑠 ∈ ℝ) ∧ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ (abs‘𝑋) < 𝑠)) → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
4948expr 456 . . . . 5 (((𝜑𝑠 ∈ ℝ) ∧ seq0( + , (𝐺𝑠)) ∈ dom ⇝ ) → ((abs‘𝑋) < 𝑠 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )))
5031, 49sylbird 260 . . . 4 (((𝜑𝑠 ∈ ℝ) ∧ seq0( + , (𝐺𝑠)) ∈ dom ⇝ ) → (¬ 𝑠 ≤ (abs‘𝑋) → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )))
5150expimpd 453 . . 3 ((𝜑𝑠 ∈ ℝ) → ((seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ (abs‘𝑋)) → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )))
5251rexlimdva 3152 . 2 (𝜑 → (∃𝑠 ∈ ℝ (seq0( + , (𝐺𝑠)) ∈ dom ⇝ ∧ ¬ 𝑠 ≤ (abs‘𝑋)) → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )))
5328, 52mpd 15 1 (𝜑 → (seq0( + , 𝐻) ∈ dom ⇝ ∧ seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  {crab 3432  wss 3962   class class class wbr 5147  cmpt 5230  dom cdm 5688  ccom 5692  wf 6558  cfv 6562  (class class class)co 7430  supcsup 9477  cc 11150  cr 11151  0cc0 11152   + caddc 11155   · cmul 11157  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  0cn0 12523  [,]cicc 13386  seqcseq 14038  cexp 14098  abscabs 15269  cli 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719
This theorem is referenced by:  radcnvlt2  26476  dvradcnv  26478  pserulm  26479
  Copyright terms: Public domain W3C validator