MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1sep Structured version   Visualization version   GIF version

Theorem t1sep 22429
Description: Any two distinct points in a T1 space are separated by an open set. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
t1sep ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ∃𝑜𝐽 (𝐴𝑜 ∧ ¬ 𝐵𝑜))
Distinct variable groups:   𝐴,𝑜   𝐵,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem t1sep
StepHypRef Expression
1 simpr3 1194 . . 3 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → 𝐴𝐵)
2 t1sep.1 . . . . . 6 𝑋 = 𝐽
32t1sep2 22428 . . . . 5 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐵𝑋) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
433adant3r3 1182 . . . 4 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
54necon3ad 2955 . . 3 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → (𝐴𝐵 → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
61, 5mpd 15 . 2 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))
7 rexanali 3191 . 2 (∃𝑜𝐽 (𝐴𝑜 ∧ ¬ 𝐵𝑜) ↔ ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))
86, 7sylibr 233 1 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ∃𝑜𝐽 (𝐴𝑜 ∧ ¬ 𝐵𝑜))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064   cuni 4836  Frect1 22366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-topgen 17071  df-top 21951  df-topon 21968  df-cld 22078  df-t1 22373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator