MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1sep Structured version   Visualization version   GIF version

Theorem t1sep 23313
Description: Any two distinct points in a T1 space are separated by an open set. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
t1sep ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ∃𝑜𝐽 (𝐴𝑜 ∧ ¬ 𝐵𝑜))
Distinct variable groups:   𝐴,𝑜   𝐵,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem t1sep
StepHypRef Expression
1 simpr3 1197 . . 3 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → 𝐴𝐵)
2 t1sep.1 . . . . . 6 𝑋 = 𝐽
32t1sep2 23312 . . . . 5 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐵𝑋) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
433adant3r3 1185 . . . 4 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
54necon3ad 2946 . . 3 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → (𝐴𝐵 → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
61, 5mpd 15 . 2 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))
7 rexanali 3092 . 2 (∃𝑜𝐽 (𝐴𝑜 ∧ ¬ 𝐵𝑜) ↔ ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))
86, 7sylibr 234 1 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ∃𝑜𝐽 (𝐴𝑜 ∧ ¬ 𝐵𝑜))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061   cuni 4888  Frect1 23250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-topgen 17462  df-top 22837  df-topon 22854  df-cld 22962  df-t1 23257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator