| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > t1sep | Structured version Visualization version GIF version | ||
| Description: Any two distinct points in a T1 space are separated by an open set. (Contributed by Jeff Hankins, 1-Feb-2010.) |
| Ref | Expression |
|---|---|
| t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| t1sep | ⊢ ((𝐽 ∈ Fre ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ ¬ 𝐵 ∈ 𝑜)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 1197 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → 𝐴 ≠ 𝐵) | |
| 2 | t1sep.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | t1sep2 23312 | . . . . 5 ⊢ ((𝐽 ∈ Fre ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) |
| 4 | 3 | 3adant3r3 1185 | . . . 4 ⊢ ((𝐽 ∈ Fre ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜) → 𝐴 = 𝐵)) |
| 5 | 4 | necon3ad 2946 | . . 3 ⊢ ((𝐽 ∈ Fre ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → (𝐴 ≠ 𝐵 → ¬ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜))) |
| 6 | 1, 5 | mpd 15 | . 2 ⊢ ((𝐽 ∈ Fre ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → ¬ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜)) |
| 7 | rexanali 3092 | . 2 ⊢ (∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ ¬ 𝐵 ∈ 𝑜) ↔ ¬ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜)) | |
| 8 | 6, 7 | sylibr 234 | 1 ⊢ ((𝐽 ∈ Fre ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵)) → ∃𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 ∧ ¬ 𝐵 ∈ 𝑜)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 ∪ cuni 4888 Frect1 23250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-topgen 17462 df-top 22837 df-topon 22854 df-cld 22962 df-t1 23257 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |