MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1sep Structured version   Visualization version   GIF version

Theorem t1sep 23257
Description: Any two distinct points in a T1 space are separated by an open set. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
t1sep ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ∃𝑜𝐽 (𝐴𝑜 ∧ ¬ 𝐵𝑜))
Distinct variable groups:   𝐴,𝑜   𝐵,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem t1sep
StepHypRef Expression
1 simpr3 1197 . . 3 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → 𝐴𝐵)
2 t1sep.1 . . . . . 6 𝑋 = 𝐽
32t1sep2 23256 . . . . 5 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐵𝑋) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
433adant3r3 1185 . . . 4 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
54necon3ad 2938 . . 3 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → (𝐴𝐵 → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
61, 5mpd 15 . 2 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))
7 rexanali 3084 . 2 (∃𝑜𝐽 (𝐴𝑜 ∧ ¬ 𝐵𝑜) ↔ ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))
86, 7sylibr 234 1 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ∃𝑜𝐽 (𝐴𝑜 ∧ ¬ 𝐵𝑜))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   cuni 4871  Frect1 23194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-topgen 17406  df-top 22781  df-topon 22798  df-cld 22906  df-t1 23201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator