MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1sep Structured version   Visualization version   GIF version

Theorem t1sep 23184
Description: Any two distinct points in a T1 space are separated by an open set. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
t1sep.1 𝑋 = 𝐽
Assertion
Ref Expression
t1sep ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ∃𝑜𝐽 (𝐴𝑜 ∧ ¬ 𝐵𝑜))
Distinct variable groups:   𝐴,𝑜   𝐵,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem t1sep
StepHypRef Expression
1 simpr3 1193 . . 3 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → 𝐴𝐵)
2 t1sep.1 . . . . . 6 𝑋 = 𝐽
32t1sep2 23183 . . . . 5 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐵𝑋) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
433adant3r3 1181 . . . 4 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → 𝐴 = 𝐵))
54necon3ad 2945 . . 3 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → (𝐴𝐵 → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
61, 5mpd 15 . 2 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))
7 rexanali 3094 . 2 (∃𝑜𝐽 (𝐴𝑜 ∧ ¬ 𝐵𝑜) ↔ ¬ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))
86, 7sylibr 233 1 ((𝐽 ∈ Fre ∧ (𝐴𝑋𝐵𝑋𝐴𝐵)) → ∃𝑜𝐽 (𝐴𝑜 ∧ ¬ 𝐵𝑜))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wral 3053  wrex 3062   cuni 4899  Frect1 23121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-iota 6485  df-fun 6535  df-fv 6541  df-topgen 17385  df-top 22706  df-topon 22723  df-cld 22833  df-t1 23128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator